Cladistic Relationships and Generic Characterization of Oxytrichid Hypotrichs (Protozoa, Ciliophora)

HELmut BERGER & WILHELM FOISSNER
Universität Salzburg, Institut für Zoologie, Salzburg, Austria

Summary: The relationships of 13 common oxytrichid genera were analysed using cladistic methods (HENNING, PAUP). Twenty-three characters in four groups were selected, viz. the morphology of the oral apparatus (three characters), infraciliation of ventral and dorsal side (ten characters), cortical features (two characters), and ontogenetic particulars (eight characters). All characters and character states are described and discussed using published and original data. Half of the characters originated independently in several genera at least twice, making it very difficult to follow oxytrichid evolution. The autapomorphies of the family Oxytrichidae are 18 characteristically arranged fronto-ventral-transverse cirri and the fragmentation of at least one dorsal kinety. The cladograms show two major branches, termed subfamily Oxytrichinae in Johnsonowski and subfamily Stylonychinae in subfam. The Oxytrichinae have a unique synapomorphy, viz. the participation of cirrus V/3 in primordia formation. This subfamily contains the genera Cyrtothyhema, Gonostomum, Notothyhema, Onychodromopsis, Oxytricha, Tachysoma, Urosoma, Uroseomoida, and, very likely, Australocirrus, Parurosoma and Pseudostrondium. The Stylonychinae have three synapomorphies, viz. the rigid body, an oral apparatus of more than 40% of body length, and the lack of cortical granules. This subfamily comprises Coniculostomum, Histrilicus, Steinita, Sterkiella, Stylonychia and, very likely, Parastylonychia and Pleurotricha. The family Oxytrichidae, its subfamilies, and the genera included are characterized and keyed. An unambiguous terminology is established for oxytrichid hypotrichs, and synonymy and nomenclature of genera are discussed.

Key Words: Histrilicus histrio; Key to genera; Morphogenesis; Oxytrichidae; Oxytrichinae; Phylogeny; Stylonychinae.

Introduction

Oxytrichid ciliates are very common in freshwater and soil. Thus, several species were already described by the pioneers of protozoology (MÜLLER 1786; EHRENBerg 1838; STEIN 1859) and placed in the genera Oxytricha, Stylonychia, and Pleurotricha. Later, DIESING (1866), STERKI (1878), KENT (1880–1882), KOWALEWSKIEGO (1882), and STOKES (1887) established further oxytrichid genera, viz. Steinita, Histrio, Opisthotricha, Urosoma and Tachysoma, using details of the oral apparatus or the length of the dorsal cilia and caudal cirri as main diagnostics. KAHL (1932) recognized all genera, but lowered most of them to subgeneric rank. Forty years later, BORROR (1972) synonymized Steinita, Urosoma and Opisthotricha with Oxytricha, considering the differences in the oral apparatus and the length of the caudal cirri as insufficient for a generic or subgeneric distinction. However, this simplification was only partially accepted by other specialists, who re-established Steinita and Urosoma because of autapomorphies in the shape of the undulating membranes and, respectively, the arrangement of some cirri in the frontal area (GROULIERE 1975; FOISSNER 1982, 1983a; Voss & FOISSNER 1995). Since then many detailed studies on the morphology and morphogenesis of oxytrichids were performed and

cal research (e.g. Schlegel & Steinbrück 1986; Ricci et al. 1991; Schlegel et al. 1991; Baroin-Touran-

chateau et al. 1992; Mitcham et al. 1994). The most detailed molecular biological studies were performed on Oxytricha nova (Klobutcher et al. 1981), a nomen nudum species, that is a taxon not existing according to the International Code of Zoological Nomenclature (ICZN 1985). More than 50 papers have been published on O. nova, but nobody knows its identity, i.e. whether
it is a new or a known species.

Certainly, not only molecular and cell biologists have problems in assigning oxytrichid hypotrichs to a certain genus but also morphologists (Hemberger 1982; Wirmserberg et al. 1986). This is due not only to insufficient data but also to the lack of a comprehensive evaluation and clear presentation of the data accumulated. The history of Histricalus muscorum can serve as a representative example of the problems tantalizing oxytrichid students. Histricalus (originally described as Histrio [Sterki 1878], but replaced by Corliss [1960] because of homonymy) was established to separate Sty-

donychia histrio Müller, 1773 from other Styndonychia species (Ehrenberg 1838), because the marginal cirral rows are posteriorly confluent and caudal cirri are lacking. However, later Kahl (1932) and Borror (1972) added species with inconspicuous caudal cirri, obviously assuming that Stein (1859) and Sterki (1878) overlooked them. Morphogenetic studies proved that such species indeed have inconspicuous caudal cirri, especially Histricalus muscorum, one of the most widespread oxytrichids (Foissner 1982; Berger et al. 1985). It was thus a great surprise for us to find a species exactly matching the original diagnosis of Sterki (1878), demanding that species assigned to Histricalus by Kahl (1932) and Borror (1972) be referred to a new genus, Sterkiella (Foissner et al. 1991). Thus, a single species has accumulated three generic combinations over time: Oxytricha (Histrio) muscorum (Kahl 1932), Histricalus muscorum (Corliss 1960; Borror 1972), Sterkiella histriomuscorum (Foissner et al. 1991). In the latter binomen, the species name has changed too, because Kahl (1932) named three other species Oxytricha muscorum, namely O. (Opisthotorcha) muscorum, O. (Steinia) mus-
corum, and O. (Stylonychia) muscorum. All these are primary homonyms, because a subgeneric name does not affect homonymy (Article 57d of ICZN 1985).

Thus, three species had to be renamed, among them also Histricalus muscorum, now called Sterkiella histrion-

muscorum (Foissner et al. 1991).

In the present paper we characterize all sufficiently investigated oxytrichid genera and analyse the cladistic relationships among the common ones, a difficult task addressed by few morphologists (Wirmserberg et al. 1986; Kamra et al. 1994; Voss & Foissner 1995) and molecular biologists (e.g. Schlegel et al. 1991; Baroin-Touranchateau et al. 1992). However, the time is ripe for such a comprehensive evaluation of data because detailed morphological and morphogenetic investigations have become available from almost all type species, i.e. from the authoritative measure of the superspecific taxa. Finally, we have tried to establish an unambiguous terminology for oxytrichid hypotrichs.

Many classifications of hypotrichs, including oxytrich-
ids, were suggested in the last decades (e.g. Borror 1972; Corliss 1977; Jankowski 1979; Small & Lynn 1985; Tuffrau 1987). With few exceptions (Borror 1972; Wirmserberg et al. 1985a) they were established without detailed discussion of the characters used.

Without doubt, the classification of the oxytrichids is in a chaotic and provisional stage. Many of the characters used for genus and species distinction appear, at first glance, inconspicuous and difficult to rate. Thus, they must be described and discussed in great detail, which is why the present paper became rather lengthy. On the other hand, molecular biological evidence (Schlegel & Steinbrück 1986; Schlegel et al. 1991) indicates that oxytrichids are even more diverse than morphologists presently assume. We hope that our approach will be helpful to both classical morphologists and modern molecular biologists.

Materials and Methods

Most of the material presented in this paper is based on

previous investigations by our group. We thus refer to these publications as concerns the origin of the material and detailed descriptions of the methods used (Foissner 1982, 1989; Berger et al. 1985; Berger & Foissner 1987, 1988a; Blatterer & Foissner 1988; Foissner et al. 1991; Voss & Foissner 1995). Briefly, all species were investigated alive and after protargol impregnation (Foissner 1991). Most of the scanning electron micrographs are shown for the first time and were obtained by the method described in Foissner (1991). Line drawings were made with a camera lucida.

The data of Histricalus histrio are from a population found in August 1986 in the periphyton of a small lake (Teu-
felsee) near Berlin (Germany). A culture was set up in a petri dish with table water (Volvic, France) and some crushed wheat grains to support growth of bacteria and small ciliates which served as food organisms.

Terminology is explained in detail in the results section. Cladistic analysis was carried out both traditionally, i.e. by HENNIG’s (1966) method (construction of the cladogram by head and hand) and with the computer program PAUP. The traditional method has been described in detail by AX (1984, 1995), HENNIG (1966, 1982), and SUDHAUS & REHFIELD (1992). In contrast to computer analysis, HENNIG’s method requires that the plesiomorphic and apomorphic state of a character is defined before the analysis is performed (Meiser 1992). To distinguish plesiomorphies from apomorphies out-group (e.g. choilastichs) and ingroup comparison was used (Ax 1984). Computer analysis was conducted with the PAUP program (Swofford 1991) using the successive weighting procedure and holocistids as outgroup. With both methods, only apmorphies are used for reconstructing phylogeny. For further details see Lipscomb (1992).

Results and Discussion

Genera concerned

For the present purposes we define as Oxytrichidae (= oxytrichids) hypotrichs usually having 18 fronto-ventral-transverse (FVT) cirri clustered to six distinct groups and at least one fragmented dorsal kinety. The FVT cirri originate from six longitudinal primordia (anlagen, generally numbered I–VI) segregating 1, 3, 3, 3, 4, and 4 cirri, respectively. Six or fewer parental FVT cirri participate in primordia formation. Usually, dorsal kinety 3 fragments, producing kinety 4 (Figs. 1, 26, 38, 44). This complex morphostatic and morphogenetic pattern has been described for at least eighteen distinct groups (genera) and shows such a high stability that it can be used to characterize the family. However, only those genera are considered in the cladistic analysis for which detailed morphogenetic data, especially on the type species, are available, viz. Coniculostomium, Cyrtolytomena, Gonostomum, Histricus, Notohymena, Oxychordomopsis, Oxytricha, Steinia, Sterkiella, Stylyonchya, Tachyosoma, Urosoma, Urosomoida. Consequently, Astralacirrus, Paraastylonchya, Paraurosoma, Pleurotricha, and Pseudostrombidium are excluded from the cladistic analysis. For completeness, however, they are characterized and included in the key.

One of the genera mentioned, Histricus, has been reinvestigated (Figs. 29–37). Briefly, this genus has confluent marginal rows and lacks caudal cirri, characters exactly matching the original description (Fig. 29). The lack of caudal cirri is confirmed by the morphogenesis of the dorsal infraciliature (Figs. 35–37). The origin of the FVT cirri highly resembles oxytrichids with a rigid cortex, i.e. the postoral ventral cirrus V/3 is not involved in primordia formation (Fig. 33).

Genera not considered

The following genera, although classified by some authors (Borror 1979; Corliss 1979; Foissner 1982, 1984, 1987b; Würnsberger et al. 1986; Foissner et al. 1987; Berger & Foissner 1988b, 1989a; Szabó & Wilbert 1995) as Oxytrichidae and/or Oxytrichids sensu lato, were not considered in our analysis because they lack the typical 18 FVT cirral pattern: Ancystropodium (Corliss 1979), Engelmanniella (Foissner 1982), Gastrostylo (Würnsberger et al. 1986), Hemisincirra (Foissner 1982, 1984), Lamustylo (Berger & Foissner 1988b), Lauren- tiella (Szabó & Wilbert 1995), Onychodromus (Foissner et al. 1987; Szabó & Wilbert 1995), Paraurostyla (Borror 1979; Würnsberger et al. 1986), Pattersoniella (Foissner 1987b), Terricirra (Berger & Foissner 1989a), Territricha (Berger & Foissner 1988b).

Ancystropodium is a polytypic, very poorly known genus, having a ventral infraciliature obviously rather similar to that of Gastrostyla (Fauré-Fremiet 1909). Detailed redescription necessary. Engelmanniella was only provisionally assigned to the Oxytrichidae (Foissner 1982). Later, morphogenetic data revealed that it is very likely a kahlilliid (Würnsberger-Aescht & Foissner 1989; Eigner 1995). Gastrostyla has distinctly more than 18 FVT cirri (Foissner 1982), which form a more or less continuous frontoventral row, suggesting a close relationship with the amphiisellids (Wicklow 1982; Eigner & Foissner 1994). However, the amphisiellids lack fragmentation of dorsal kineties, which is common in Gastrostyla. In fact, the dorsal morphogenesis of Gastrostyla proceeds as in Oxytricha (walker & Grim 1973).

Hemisincirra comprises several, usually very slender soil inhabiting species which have, however, not a very uniform infraciliature (Foissner 1982, 1984; Hemberger 1985). Some of them (e.g., H. polynucleata) have the frontoventral cirri very similar arranged as Urosoma (see below). Detailed morphogenetic and molecular biological data are needed to ascertain the phylogenetic relationships of this genus.

Lamustylo was originally classified in the Holostichidae (Buitkamp 1977a), and later transferred to the cladotrichidae (Small & Lynn 1985), however, without detailed explanation. Others (Berger & Foissner 1987, 1988b) proposed a classification in the Oxytrichidae because of morphogenetic similarities. Recently, Petz & Foissner (1996) provided convincing morphogenetic evidences that Lamustylo belongs to the amphisiellids.

Laurentiella, Onychodromus, and Pattersoniella are usually classified as oxytrichids sensu lato (Martin et
al. 1983; FOISSNER 1987b; FOISSNER et al. 1987), i.e. as sister group of the 18 FVT cirri oxytrichids. However, the comparison of small subunit ribosomal RNA sequences places *Onychodromus quadricornatus* very close to *Stylonychia* (SCHLEGEL et al. 1991). The three genera mentioned have some conspicuous characters in common, viz. a rigid body, a very large oral apparatus, lack of cortical granules, and a complicated dorsal ciliary pattern (multiple fragmentation and/or retention of parental dorsal kineties). The first three features match the autapomorphies of the *Stylonychia* branch exactly (Fig. 49a, b), strongly supporting the classification inferred from the RNA sequences (SCHLEGEL et al. 1991). Possibly, these genera evolved from a *Australocirrus octonucleatus*– and/or *Coniculostomum*-like hypotrich, both also having a complex dorsal ciliation, by secondary polymerization of the anlagen (*Pattersoniella*) and/or secondary polymerization of cirri within the anlagen (*Onychodromus, Laurentiella*), as proposed by SCHLEGEL et al. (1991).

Paraurostyla was originally classified in the *Urostylidae* (BORROR 1972), and later transferred to the oxytrichids because of similarities in ventral morphogenesis with the 18 FVT cirri oxytrichids (Borror 1979). Furthermore, dorsal morphogenesis proceeds as in *Oxytricha* (WIRNSBERGER et al. 1985b). However, it is difficult to ascertain whether *Paraurostyla* branches off from the base of the cladogram, as suggested by the high (ancestral?) number of cirri or if it is a member of the *Oxytrichinae* (see below) with a secondarily increased number of fronto-ventral-transverse cirri.

Terricirra includes three soil inhabiting species with green to blue-green cortical granules, spindle-shaped food vacuoles, short undulating membranes forming an acute angle, and one short frontoventral row (BERGER & FOISSNER 1989a). The ventral infraciliature is highly reminiscent of that of *Lamtopsystylus* (see above), which is now classified in the family *Amphisiellidae* (PETZ & FOISSNER 1996). Morphogenetic data are needed to clarify the systematic position of *Terricirra*.

Territricha, a monotypic genus, was originally placed in the *Urostylidae*. It has some sort of midventral rows but a typical oxytrichid cirrall pattern in the frontal area (BERGER & FOISSNER 1988b). Thus, a position between urostyldids and oxytrichids was proposed. However, the fragmentation in dorsal kinety 3 suggests that *Territricha* branches off from the oxytrichids.

Characters, character states, parallelisms and terminology

The generic characterizations and the cladistic analysis are based on four groups of characters: the morphology of the oral apparatus (characters 1–3), the infraciliature of the ventral and dorsal side (characters 4–13), cortical features (e.g. flexibility of body; characters 14, 15), and on the morphogenesis of the ventral and dorsal infraciliature (characters 16–23). The characters and character states used are summarized in Table 1, and their distribution in the taxa is given in Table 2. To preserve terminological consistency, we use terms as defined by previous authors (WALLENGREN 1900; KAHL 1932; BORROR 1972; CORLISS 1979). However, some minor changes and emendations are necessary and will be introduced in the appropriate sections.

The basic morphology of the oxytrichid cell is explained in Figs. 1, 6. Briefly, the ventral side bears the oral apparatus, usually 18 FVT cirri arranged in six groups, and two (rarely more) rows of marginal cirri. The adoral zone of membranelles extends near the left body margin from the anterior end to about mid-body; right of the zone are two undulating membranes bordering a more or less wide and deep buccal cavity. The dorsal side bears 3–6, rarely more, longitudinal kinetics usually having short (about 3 µm) cilia (bristles) and three caudal cirri attached to kinetics 1, 2, 4. The majority of oxytrichids have two macronuclear nodules and two micronuclei; a few have four or even eight nodules. The contractile vacuole is in or near mid-body, close to the left margin. Some species form giant cysts (e.g. ROSATI et al. 1988) and most, probably all, are omnivorous and at least the larger species even predatory.

Character 1: Shape of the adoral zone of membranelles (Figs. 1, 4, 7, 10, 13, 16, 20, 22). The adoral zone is formed like a question mark in most oxytrichids, as in the majority of hypotrichs, indicating that this configuration is pleisiomorphic (Figs. 1, 13, 20). Only in *Urosoma* and *Gonostomum* is the middle portion straight and extends along the left margin of the cell, causing the proximal part of the zone to become abruptly bent towards the centre of the body (Figs. 4, 10, 16, 22). Obviously, this is a rare and thus derived configuration.

Character 2: Relative length of the adoral zone of membranelles. The ratio of the length of the adoral zone to the length of the cell is possibly of cladistic significance in oxytrichid hypotrichs. It is less than 40% (usually 25–35%).

E = endoral, FC = frontal cirri, FVC = frontoventral cirri, LMR = left row of marginal cirri, MA = macronuclear nodule, MI = micronucleus, P = paroral, PTVC = pretransverse ventral cirri, PVC = postoral ventral cirri, RMRR = right row of marginal cirri, TC = transverse cirri, 1–VI = primordia (anlagen) 1–VI, 1–4 and 1–6 = numbering of cirri within a primordium and numbering of dorsal kineties, respectively. Dorsal rows 5 and 6 are termed dorsomarginal kineties.
Table 1. Characters, character states, and coding used for the construction of the cladograms shown in Figs. 49a, b. Character state matrix see Table 2. Definition of plesiomorphic and apomorphic states refer only to the traditionally constructed cladogram (Fig. 49a).

<table>
<thead>
<tr>
<th>No.</th>
<th>Character</th>
<th>Character states</th>
<th>Plesiomorphic</th>
<th>Apomorpic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shape of adoral zone of membranelles</td>
<td>formed like a question mark (coded 0)</td>
<td>Gonostomum pattern (coded 1)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Relative length of adoral zone of membranelles</td>
<td>≤40%, usually 25–35%, of body length (coded 0)</td>
<td>≥40%, usually 45–50%, of body length (coded 1)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Arrangement of paroral and endoral membranes</td>
<td>Oxytricha pattern (coded 0)</td>
<td>Gonostomum pattern (coded 1)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Frontal cirri*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Buccal cirrus*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Arrangement of frontoventral cirri</td>
<td>V-shaped (coded 0)</td>
<td>longitudinal (coded 1)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Position of postoral ventral cirri</td>
<td>underneath adoral zone (coded 0)</td>
<td>right of adoral zone (coded 1)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Number of pretransverse ventral cirri</td>
<td>2 (coded 0)</td>
<td>1 (coded 1)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Number of transverse cirri</td>
<td>usually 5, rarely 4 (coded 0)</td>
<td>less than 4 (coded 1)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Number of marginal rows</td>
<td>2 (coded 0)</td>
<td>more than 2 (coded 1)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Distance between posterior ends of marginal rows</td>
<td>present (coded 0)</td>
<td>absent (coded 1)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Number of dorsal kinetics</td>
<td>5 or 6 (coded 0)</td>
<td>4 (coded 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 (coded 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥6 (coded 3)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Caudal cirri</td>
<td>present (coded 0)</td>
<td>absent (coded 1)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Body</td>
<td>flexible (coded 0)</td>
<td>rigid (coded 1)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Cortical granules</td>
<td>present (coded 0)</td>
<td>absent (coded 1)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Primary primordia</td>
<td>absent (coded 0)</td>
<td>present (coded 1)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Origin of proter’s primordia V and VI</td>
<td>from frontoventral cirrus IV/3 (coded 0)</td>
<td>de novo (coded 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>primordium V from cirrus V/4 and primordium VI from cirrus V/3 (coded 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>from cirrus V/4 (coded 3)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Origin of opisthe’s primordia V and VI</td>
<td>from postoral ventral cirrus V/3 and/or V/4 (coded 0)</td>
<td>de novo (coded 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>involved in primordia formation (coded 1)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Postoral ventral cirrus V/3</td>
<td>not involved in primordia formation (coded 0)</td>
<td>involved in primordia formation (coded 1)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Origin of opisthe’s primordium IV</td>
<td>cirrus IV/2 (coded 0)</td>
<td>cirrus V/4 (coded 1)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Origin of proter’s primordium II</td>
<td>cirrus II/2 (coded 0)</td>
<td>oral primordium (coded1)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Origin of right marginal row(s)</td>
<td>new formation of 1 row, no parental marginal cirri retained (coded 0)</td>
<td>new formation of 2 or more rows, no parental marginal cirri retained (coded 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>new formation of 1 row, parental marginal cirri retained (coded 2)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Morphogenesis of dorsal kinetics</td>
<td>Oxytricha pattern (coded 0)</td>
<td>Urostomoida pattern (coded 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gonostomum pattern (coded 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tachysoma pattern (coded 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coniculostomum pattern (coded 4)</td>
<td></td>
</tr>
</tbody>
</table>

* Not used in cladistic analysis.
Table 2. Distribution of characters in the 18 cirri oxytrichids. Coding see Table 1. – = not used; ? = not-applicable.

<table>
<thead>
<tr>
<th>Character</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coniculostomum</td>
<td>014-00001 0301103001 124</td>
</tr>
<tr>
<td>Crytohymena</td>
<td>003-00000 0000001010 000</td>
</tr>
<tr>
<td>Gonostomum</td>
<td>111-01010 020001 ??! 002</td>
</tr>
<tr>
<td>Histricus</td>
<td>010-00000 101110?00? 000</td>
</tr>
<tr>
<td>Notohyomena</td>
<td>002-00000 0000001010 000</td>
</tr>
<tr>
<td>Onychodromopsis</td>
<td>090-00001 0000002010 010</td>
</tr>
<tr>
<td>Oxytricha</td>
<td>000-00000 0000002010 000</td>
</tr>
<tr>
<td>Steinita</td>
<td>015-00000 0001030000 000</td>
</tr>
<tr>
<td>Sterkiella</td>
<td>010-00000 000101?00? 000</td>
</tr>
<tr>
<td>Stylochnia mytilus</td>
<td>014-00000 0001030001 100</td>
</tr>
<tr>
<td>Stylochnia vorax</td>
<td>014-00000 0001100000 000</td>
</tr>
<tr>
<td>Tachysoma</td>
<td>000-00000 001001?11? 003</td>
</tr>
<tr>
<td>Urosoma</td>
<td>101-01000 010001?11? 001</td>
</tr>
<tr>
<td>Urosomoida</td>
<td>000-00110 0100000110 001</td>
</tr>
<tr>
<td>holostichids</td>
<td>000-20000 0?0?00?0? 002</td>
</tr>
</tbody>
</table>

in genera with a flexible body and in most other hypotrichs (except eudiots), indicating that such values represent the ancestral state. Exceptions are, e.g., Crytohymena quadrinucleata (FOISSNER 1984) and Gonostomum spp., whose adoral zone is 40–50% of body length, as in all genera with a rigid body.

A correlation between the relative length of the zone and the mode of nutrition is neither known nor apparent. However, such a correlation possibly exists with the absolute size of the buccal cavity; usually, species with a small cavity (e.g., Oxytricha setigera, Tachysoma pellionellum) feed on bacteria and small protists, while those with a large buccal cavity are rapacious carnivores (e.g., Sterkiella cicatili, Crytohymena spp.).

Character 3: Paroral, endoral, and buccal cavity (Figs. 1, 7–25). The terms paroral and endoral membrane were introduced by STERN (1878). However, he used the first one to describe the rightmost cilium of the hypotrich adoral membranelles, which often beat independently of the remaining part of the membranelles. But for some decades the term paroral membrane has been rather uniformly used in a wide variety of ciliates for the right portion of the oral ciliature (EISLER 1992). We follow LYNN (1988) in that we use paroral and endoral as nouns. Synonyms of the hypotrich paroral are undulating membrane (used e.g. in KAIL 1932; BORROR 1972; FOISSNER et al. 1991), paroral formation 2 (FERNANDEZ-LEBORANS 1985), external paroral kinety (FERNANDEZ-LEBORANS 1985), and inner preoral membranelle (JERKA-DZIADOZ 1981). Synonyms of the endoral are paroral formation 1 (FERNANDEZ-LEBORANS 1985), internal paroral kinety (FERNANDEZ-LEBORANS 1985), and inner preoral kinety (JERKA-DZIADOZ 1981).

The shape of the paroral and endoral and their arrangement are very important for distinguishing oxytrichid genera (FOISSNER 1989). In general, the paroral extends at the outer margin of the buccal cavity, i.e. on the cell surface, while the endoral is on the bottom and right border of the cavity. This means, the membranes extend at clearly different levels. However, if the cell is viewed from ventral, they appear to lie side by side (e.g. in Stylonychia. Figs. 11, 17) or intersect (e.g. in Oxytricha. Figs. 7, 13), depending on their shape and arrangement. The buccal cavity is also rather different in shape and size and is described by the terms flat or deep and wide or narrow. Flat means that the buccal field is only slightly hollowed, whereas a deep cavity extends almost to the dorsal surface, making the buccal field conspicuously bright. In a wide buccal cavity the paroral, i.e. the right margin of the cavity, is in the midline of the cell, whereas in a narrow buccal cavity the paroral is displaced to the left, that is very close to the adoral zone. The six known patterns of character 3 are described in the following paragraphs.

Oxytricha pattern (Figs. 1, 7, 13, 19, 20): The paroral and endoral are slightly curved and optically intersect at about the middle. The buccal cavity is usually rather flat and narrow. This pattern prevails in oxytrichids such as, e.g., Ourostyla, Holotricha, and amphisiellids (FOISSNER et al. 1991; EGILNER & FOISSNER 1994). We thus consider it the plesiomorphic state. In our opinion, all other patterns, except that of Steinita which very likely evolved from the Stylonychia pattern, originated directly from the Oxytricha state, but very likely at different times and comparatively late, as indicated by the rather great homogeneity of the family, making the classification of oxytrichid hypotrichs so difficult. The assumption of a direct evolution provides a more parsimonious cladogram than a series of transformations. As concerns the time scale, HAECKEL’s ontogenetic principle can be applied. All oxytrichids and related hypotrichs have an identical origin of the undulating membranes, viz. they are formed in parallel rows right of the primordium. Then, when the oral apparatus invaginates in late dividers, an Oxytricha-like pattern becomes recognizable for a short time. The genus-specific patterns described below, originate only in very late dividers and early postdividers and are obviously produced by the particular shaping of the buccal cortex.

Gonostomum pattern (Figs. 4, 10, 16, 22, 23): The paroral consists of two, widely spaced cilia and extends far beyond the anterior end of the endoral, which is of usual structure. The buccal cavity is very small and flat. This pattern occurs in Gonostomum and Urosoma and very likely evolved concomitantly with the peculiar shape of their adoral zone (character 1).

Notohyomena pattern (Figs. 8, 14): The Notohyomena pattern differs from the Oxytricha state in that the paroral, which is often more distinctly curved, has a hooked distal end bent anteriorly and ventrally. The buccal cavity is moderately wide and rather deep. This pattern occurs only in Notohyomena.

Crytohymena pattern (Figs. 9, 15, 21): This pattern is very prominent, but has often been confused, e.g. by KAHL (1932), with the Steinita pattern, because both genera have a very deep and wide buccal cavity. The cavity is bordered by a long paroral whose distal portion is semicircularly curved. The straight anterior part of the endoral extends diagonally on the bottom of the buccal cavity, while its pos-
Figs. 13–18. Characters 1 and 3, shape of adoral zone of membranelles and arrangement of paroral and endoral in oxytrichids after protargol impregnation. Bars = 20 µm. 13. Plesiomorphic Oxytricha pattern in Sterkiella histriomuscorum. The paroral and endoral are slightly curved and intersect optically (arrow). The adoral zone is formed like a question mark as in all derived states, except for the Gonostomum pattern (Fig. 16). 14–18. Derived states. 14. Notohymena pattern in Notohymena rubescens. Arrow marks hooked distal end of paroral. From Blatterer & Foissner (1988). 15. Cyrtohymena pattern in Cyrtohymena quadrinucleata. The distal portion of the paroral is semicircularly curved and the straight anterior half of the endoral extends diagonally on the bottom of the buccal cavity, while its posterior half is curved and at the right buccal wall and thus intersects optically with the posterior half of the paroral. 16. Gonostomum pattern in Gonostomum affine. The proximal part of the adoral zone is abruptly bent towards the body centre (arrow). The paroral consists of few, widely spaced cilia and extends beyond the anterior end of the endoral. 17. Stylonychia pattern in Stylonychia pustulata. The paroral and endoral are straight or slightly curved and arranged side by side. From Foissner et al. (1991). 18. Steinia pattern in Steinia sphagnicola. The sinusoidal endoral is fragmented (arrows) and does not intersect with the curved paroral. The specimen shows a surplus frontal cirrus (arrowhead). From Voss & Foissner (1995). AZM = adoral zone of membranelles, BC = buccal cirrus, E = endoral, FC = frontal cirri, FVC = frontoventral cirri, LMR = left row of marginal cirri, MA = macronuclear nodule, P = paroral, PTVC = pretransverse ventral cirri, RMR = right row of marginal cirri, TC = transverse cirri.
Figs. 19-25. Characters 1 and 3, oral apparatus of oxytrichids in the scanning electron microscope. Bars = 10 μm. 19, 20. Plesiomorphic *Oxytricha* pattern in *Oxytricha granulifera* and *Sterkiella cavicola*. The slightly curved paroral, which borders the rather flat and narrow buccal cavity, inserts in a narrow furrow of the buccal lip (arrowheads). 21. *Cyrtophymena* pattern in *Cyrtophymena quadrinucleata*. Note semicircularly curved distal portion of paroral and straight anterior part of endoral extending diagonally on the deep and wide buccal cavity. 22, 23. *Gonostomum* pattern in *Gonostomum affine*. The paroral consists of few, widely spaced cilia. The endoral, which lies in the very small buccal cavity, is not recognizable. Note the peculiar shape of the adoral zone. Arrowhead marks a food particle. 24. *Stylonychia* pattern in *Stylonychia mytilus*. The undulating membranes are straight and arranged in parallel. The buccal cavity is flat and wide. 25. *Steinia* pattern in *Steinia sphagnicola*. The paroral is slightly curved, the endoral is fragmented (arrows) and extends on the bottom of the deep and moderately wide buccal cavity. AZM = adoral zone of membranelles, BC = buccal cirrus, E = endoral, FC = frontal cirri, FVC = frontoventral cirri, LMR = left row of marginal cirri, P = paroral, PVC = postoral ventral cirri.
terior half is curved and at the right buccal wall and thus optimally intersects with the posterior portion of the paroral. Consequently, the anterior parts of the membranes form a figure like an archer’s bow. This configuration is restricted to *Cyrtothymena*.

Sstylonychia pattern (Figs. 11, 17, 24): The paroral and the endoral are straight or very slightly curved and arranged almost in parallel. The buccal cavity is wide and flat. This pattern also occurs in *Coniculostomum*. A very similar configuration is described for the type species of *Onychodromopsis* (PETZ & FOISSNER 1996; Fig. 54). This must be explained as parallelism, because many other significant characters assign this genus as a sistergroup of *Oxytricha* (Figs. 49a, b). However, other *Onychodromopsis* species have the plesiomorphic *Oxytricha*-pattern indicating that this parallelism evolved within *Onychodromopsis*.

Steinia pattern (Figs. 12, 18, 25): *Steinia* has the most complex pattern, not only in oxytrichids but also as compared with the hypotrichs in general. The sinusoïdal endoral is fragmented in the middle part and does not intersect with the curved paroral. At the anterior end of the buccal cavity close to the left anterior margin of the endoral there is a unique cavity of unknown function extending to the dorsal surface (Fig. 27). In life, the *Steinia* pattern resembles the *Cyrtothymena* configuration because of the large and bright anteriorly semicircularly excavated buccal field. There is some evidence that further patterns exist, especially within the genus *Oxytricha*, which is very likely paroral polyphyletic (e.g., *O. sieris* in FOISSNER 1982). Furthermore, the differences mentioned above probably concern not only the shape of the membranes but also their fine structure (FERNANDEZ-LEBORANS 1985; FOISSNER 1995).

Character 4: Frontal cirri (Figs. 1, 13, 25). This group, named anterior frontal cirri by some authors (e.g. FOISSNER & ADAM 1983b), invariably consists of three cirri in the 18 FVT cirri oxytrichids, viz. 1/I, 1/II, and 1/III. Thus, it cannot be used as phylogenetic marker. Usually, the frontal cirri are slightly to distinctly enlarged as compared with the frontoventral cirri (character 6).

BORROW (1972) designated the leftmost frontal cirrus (cirrus I/1) as buccal and later (BORROW 1979; BORROW & WICKLOW 1983) as paroral cirrus because it originates from the same anlage as the undulating membranes (Figs. 1, 26, 33; see character 5 for further details on this confusing terminology). However, a name for this cirrus seems superfluous, because there are also several other cirri, especially in the opisthe, which originate from the oral primordium (Figs. 38–43).

Character 5: Buccal cirrus (Figs. 1, 13, 25). This term is used for cirrus II/2, invariably close to the right and often near the anterior end of the paroral. While its position along the paroral has no cladistic significance, its morphogenetic activity is a valuable apomorphy for some genera (see character 21).

There is great confusion about the terminology of cirrus II/2. BORROW (1972) introduced the term buccal cirrus for cirrus I/1, that is the leftmost frontal cirrus in our terminology (Fig. 1). According to him, the “buccal cirrus” (cirrus I/1) may occur to the immediate right of the paroral, or be located elsewhere near the anterior end of the ventral surface. This is obviously incorrect, because cirrus I/1 is invariably located in front of the undulating membranes and never right of the paroral. Very likely BORROW (1972) confused cirrus I/1 and II/2. Furthermore, he erroneously labelled cirrus II/2 as buccal cirrus, and not cirrus I/1, as intended, in his schematic Fig. 1. Presumably, this misleading labelling caused some taxonomists (BUTKAMP 1977a, b; FOISSNER 1982) to use the term buccal cirrus for cirrus II/2, which was not specifically named by either BORROW (1972, 1979) or previous authors. Subsequently, the name buccal cirrus was used in the latter sense by many taxonomists (e.g., FOISSNER 1983a, 1984, 1987b, 1988; FOISSNER & ADAM 1983a, b; BERGER et al. 1985; HEMBERGER 1985; WIRNSBERGER et al. 1985a, b, 1986; GANNER et al. 1987; BERGER & FOISSNER 1988a, b, 1989a; BLATTERER & FOISSNER 1988, 1990; SONG & WILBERT 1989; FOISSNER et al. 1991; VOSS 1991a, b; AUGUSTIN & FOISSNER 1992; VOSS & FOISSNER 1995). The confusion was further increased by BORROW (1979) in that he introduced the term paroral cirrus, a replacement name for “buccal cirrus” (cirrus I/1) sensu BORROW (1972). Finally, BORROW & WICKLOW (1983) introduced the term molar cirrus for cirrus II/2. Thus, molar cirrus is a synonym of our preferred term buccal cirrus. In conclusion, we strongly recommend using descriptive terms concomitantly with the well-established and simple numbering system introduced by WALLENGEN (1900).

Character 6: Frontoventral cirri (Figs. 1, 13, 25). This group comprises four cirri (III/2, IV/3, V/3, V/4) between the anterior portion of the right marginal row and the paroral. The V-shaped arrangement shown in Fig. 1 is widespread and thus possibly the plesiomorphic state, as also suggested by the computer generated tree. In *Urosoma* cirrus III/2 is in front of the other three cirri, which thus form a longitudinal row (Fig. 2). No other genus-specific patterns have been distinguished. However, cirrus III/2 shows a tendency to be placed more posteriorly in species having a rigid body, e.g., in *Stylonychia mytilus*, *Steinia* spp., and *Histricalus histrio* (Figs. 3, 18, 31, 62). Furthermore, the frontoventral cirri are displaced posteriorly in *Oxytricha setigera* and related species (FOISSNER 1982; SONG & WILBERT 1989). The frontoventral cirri VI/3 and VI/4, which never form primordia during morphogenesis, are homologous to the migratory cirri (BORROW & WICKLOW 1983; = fronto-terminal cirri of HEMBERGER 1985) of the urostylistis (WIRNSBERGER et al. 1985a).

Character 7: Postoral ventral cirri (Figs. 1, 4, 19, 20). This term is commonly used for the cirri IV/2, V/3, and V/4, which are underneath the proximal end of the adoral zone. These three cirri form a narrow group close to the buccal vertex in *Oxytricha*, *Onychodromopsis*, *Urosomoida*, *Urosoma*, *Cytrothymena*, *Notothymena*, and *Tachysoma* (Figs. 51, 53–56, 58–60). By contrast, cirrus V/3 (posterior postoral ventral cirrus) is distinctly separated from the other two cirri in some genera with a rigid body, e.g., *Sterkiella* and *Steinia* (Figs. 1, 65). However, transitions exist and thus this character is of cladistic significance only in *Gnositostomum*, where morphogenetic studies (HEMBERGER 1982; SONG 1990) revealed that the postoral ventral cirri are displaced right of the proximal portion of the adoral zone of membranelles (Fig. 4).
Character 8: Pretransverse ventral cirri (Figs. 1, 29). This new term is introduced for ventral cirri V/2 and VI/2, which are in front of the transverse cirri. This state (two cirri), which occurs also in holostichids (FOISSNER 1982, 1984), is very likely plesiomorphic. The loss of one of these cirri, e.g. in Urosomoida, is considered an autapomorphy (Fig. 5).

Character 9: Transverse cirri (Figs. 1, 17, 29). This group is in the posterior quarter of the cell. The basic pattern comprises five cirri, namely II/1, III/1, IV/1, V/1, and VI/1. The loss of cirrus II/1 undoubtedly occurred independently in different genera because species with four or five transverse cirri are found even in the same genus, e.g. in Cyrtotricha. Thus, only a reduction of the number to ≤3 is used as generic autapomorphy. The transverse cirri are often distinctly enlarged as compared with the pretransverse ventral cirri, e.g. in Histrichius histrio (Fig. 31) and/or separated into two distinct groups, e.g. in Stylonychia mytilus, Coniculostomum spp., and Steinitza sphagnicola (Figs. 61, 62, 64, 65).

Characters 10, 11: Number and arrangement of marginal cirral rows (Figs. 1, 17). Most oxytrichids have one left and one right row of marginal cirri, suggesting this to be the plesiomorphic state. Consequently, an increased number is the apomorphically evolved state (Fig. 5).

Character 12: Number of dorsal kinetics (Fig. 6). Most oxytrichids have five or six dorsal kinetics (WIRNBERGER et al. 1986). Lower or higher numbers are considered to be derived states.

Dorsal kinetics consist of basal body pairs. The anterior basal body bears a 2–15 μm (usually 3–6 μm) long, stiff cilia, frequently named bristle (GRIMES & ADLER 1976). GÖRTZ (1982) found that the mature dorsal dikinetid of Stylonychia mytilus differs from that of S. pustulata and Oxytricha sp. (GRIMES & ADLER 1976) in that the posterior basal body is reduced to a fibrous structure after cell division. Possibly, this is an autapomorphy of species of the S. mytilus-complex; however, data on closely related taxa,
Figs. 30–37. Morphology and morphogenesis of *Histricalus histrio*. Bars = 20 μm. (Fig. 30, from life; 31–37, protargol impregnation). 30, 31, 34. Ventral and dorsal views of morphostatic specimens. Arrow marks confluent marginal rows (character 11). 32. Morphogenesis commences with the formation of an oral primordium close to the left transverse cirrus. 33. Ventral side of a middle divider showing that the posterior postoral ventral cirrus V/3 is not involved in primordia formation. This is the plesiomorphic state of character 19 and thus assigns *Histricalus* unambiguously to the subfamily Stylonychinae. Parental cirri are depicted by contour, new cirri are shaded black. 35–37. Morphogenesis of the dorsal ciliature. Arrowheads in Fig. 36 mark fragmenting dorsal kinety 3, arrowhead in Fig. 37 marks proter’s dorsomarginal kineties (dorsal kineties 5 and 6). Note that no caudal cirri are formed at the posterior end of the dorsal kineties (arrows), which is the apomorphic condition of character 13. OP = oral primordium, V/3 = posterior postoral ventral cirrus, 1–6 = dorsal kineties.
like Coniculostomum and Steinia, are needed to evaluate this feature reliably.

Character 13: Caudal cirri (Fig. 6). These are at the posterior margin of the dorsal surface and originate from the end of dorsal kinetics 1, 2, and 3 or 4 (see character 23). Since they are widespread in oxytrichids, their presence is considered as plesiomorphic (Wransberger et al. 1986). Consequently, the absence of caudal cirri in e.g. Tachysoma and Histiuridae is an apomorphy which was, however, obtained independently as suggested by the cladogram (Figs. 49a, b). The relative length of the caudal cirri was used by Kahl (1932) as character for the genera Opisthotricha and Stylonychia. However, at the present stage of knowledge, the length is of significance for species distinction only.

Character 14: Flexibility of body and body shape. A difference in the flexibility of hypotrichs was already mentioned by Stein (1859) and later used by Kent (1880–1882), Kahl (1932), Borror (1972), and Small & Lynn (1985) to distinguish several oxytrichid genera. Flexibility is typical for about half of the oxytrichid genera (e.g. Oxytricha, Tachysoma, Notohymena, Urosoma) and also for many (all except for euplotids and the curious Pseudotricha; see Kahl 1932 and Fossner 1983b) other hypotrichs, indicating that this is the ancestral state. The difference in body flexibility is correlated with ultrastructural specializations, although evidence is still scanty. Oxytrichids with a rigid body have several, in Stylonychia arranged crosswise, layers of subpellicular microtubules (Puytorac et al. 1976; Calvo et al. 1986), while hypotrichs with a flexible body have only a single sheet of parallel, polar microtubules (Grimes 1972; Wransberger-Aecht & Fossner 1989).

The flexibility of the body is of central importance in our cladogram, because it provides rather parsimonious and reasonable trees uniting taxa with considerable morphogenetic similarities, which are, however, plesiomorphic. Admittedly, the flexibility is a difficult character to judge because it is a relative measure often needing the comparison with the extremes on the scale. Flexible hypotrichs bend laterally while moving unhampered on the substratum, when swimming they are often curved and when touching an obstacle their anterior half contracts slightly. Rigid hypotrichs never bend in any direction while creeping and look like a rotating rod when swimming. Most flexible oxytrichids have a slender body, i.e. the ratio of body width to length is <40%, usually about 30%, while it is >40% in oxytrichids with a rigid body. Furthermore, tailed species occur only in flexible oxytrichids, especially in Urosoma, Urosomoida, and Paraurina (Figs. 36, 59).

Character 15: Cortical granules (Fig. 28). These structures, often some sort of extrusome, are of great value for species identification (Fossner 1982; Borror & Wicklow 1983). They are widespread in hypotrichs and at least one species with cortical granules is known in all flexible oxytrichid genera, suggesting that cortical granules are plesiomorphic. Surprisingly, cortical granules are entirely lacking in rigid oxytrichids. Thus, we consider this character as a useful phylogenetic marker very likely correlated in some way with the cortical fine structure. Obviously, the granules were lost in the last common ancestor of the rigid oxytrichids.

Character 16: Primary primordia (Fig. 39). Urosoma and Gonostomum develop long cirral streaks during early morphogenesis (Fossner 1983a; Song 1990). Later, these so-called primary primordia divide transversely to form secondary primordia, i.e. the usual oxytrichid cirral anlagen in proter and opisthe. This type of primordia formation has also been described for Tachysoma pellionellum, but not for T. terricola (Hemberger 1982), suggesting either poly- or paraphyly of Tachysoma, or independent evolution of primary primordia in the Gonostomum-Urosoma group and Tachysoma, respectively. All other oxytrichids develop at least some cirral streaks independently in proter and opisthe. Thus, separated cirral primordia are considered to be the plesiomorphic character state (Fig. 38).

Character 17: Origin of primordia V and VI of the proter. The origin of these anlagen is very likely of great cladistic significance. Four states are recognizable (Table 1). First state (Table 3 and Fig. 38): Primordia V and VI originate from cirri located in the anterior half of the cell, i.e. from the parental frontoventral cirrus III/2 and/or IV/3. This configuration occurs in Stylonychia pastillata and S. vorax, where both anlagen originate from the parental frontoventral cirrus IV/3. Second state (Table 3 and Fig. 41): In Urosomoida, Notohymena, and Cyrtotricha both primordia are formed de novo. Third state (Table 3 and Fig. 40): In Oxytricha grandifera, O. longa, and in Onychodromopsis flexilis primordium V of the proter originates from the postoral ventral cirrus V/4 and primordium VI from the postoral postoral ventral cirrus V/3. The data on O. longa are from the populations 3 and 4 of Urosomoida agiliformis sensu Ganner et al. (1987). These populations also have a significantly higher number of pretransverse ventral and transverse cirri than the type populations of U. agiliformis (see Table 1 in Ganner et al. 1987), suggesting that they are not conspecific. Fourth state (Table 3 and Figs. 42, 43): In Steinia, Coniculostomum, and in species of the Stylonychia mytilus-complex, both primordia originate from the postoral ventral cirrus V/4.

It is difficult to ascertain the ancestral and the derived states. We assume that the first state is the plesiomorphic condition, because all primordia of the proter derive from cirri located in the oral half of the cell, i.e. all primordia originate independently in the proter and the opisthe (Fig. 38). This model is also found in Paraurostyla (Jerk-Dzialdowicz & Frankel 1969; Wransberger et al. 1985b) and Gastrostyla (Hemberger 1982), members of assemblages branching possibly at the base of the oxytrichids (Wransberger et al. 1985b, 1986).

Character 18: Origin of primordia V and VI of the opisthe. These primordia usually originate from the postoral ventral cirri. Thus, de novo formation in Sterkiella cavicola (F. W., unpubl. data) and, possibly, also in S. hystromuscorum (Table 2) have to be considered as a derived condition.

Character 19: Participation of cirrus V/3 in anlagen formation (Table 3 and Figs. 33, 38–43). The cladistic significance of this cirrus was first recognized by Wransberger et al. (1986). It may or may not be involved in primordia formation. Wransberger et al. (1986) considered its inactivity.
Figs. 38–43. Schematic illustration of characters 16–21, ontogenesis of primordia I–VI. For designation of FVT cirri see Fig. 1. Cirri involved in primordia formation are symbolized by black dots. The direction of the arrows has no meaning. Marginal rows omitted. For details, i.e. definition of states see characters 16–21 and Table 1. 38. Spongilla pustulata and S. vorax. 39. Primary primordia. This apomorphic type of anlagen formation occurs in Gonostomum, Urosoma, and
as apomorphy and thus obtained Stylonychia and Sterkiella as a sister-group. We assume the very opposite using the hypothesis by WIRNSBERGER (1987) that anlagen V and VI of the oxytrichids are homologous to the two posteriormost (rightmost) and morphogenetically inactive anlagen in holostichids. Using holostichids as outgroup, the inactivity of cirrus V/3 is a plesiomorphy, whereas its participation is an autapomorphy, uniting all genera with a flexible cortex. Usually, in these genera cirrus V/3 is arranged very close to the remaining postoral ventral cirri (e.g., Figs. 51, 55).

Character 20: Origin of primordium IV of the opisthe (Table 3 and Figs. 38, 43). This primordium usually originates from postoral ventral cirrus IV/2, indicating that this is the ancestral condition. In Conicalostomum and species of the Stylonychia mytilus-complex cirrus IV/2 is not involved in primordium formation, and anlage IV of the opisthe originates from the postoral ventral cirrus V/4. Thus, the ontogenetic inactivity of cirrus IV/2 is considered as apomorphy.

Table 3. Origin of the FVT primordia in several oxytrichids.

<table>
<thead>
<tr>
<th>Species (Reference)</th>
<th>Primordiuma</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Urosomoida agiliformis (1)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Urosomoida agilis b (2)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Cyrtothymina muscorum (3)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Notothymina rubescens (4)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Oxytricha granulifera (5)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Oxytricha longa (6)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Onychodromopsis flexilis (7)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Sterkiella histriomuscum (8)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Stylonychia pustulata (9)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Stylonychia varia (9)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Steinia sphagnicola (10)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Stylonychia mytilus (11)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
<tr>
<td>Conicalostomum monilata (12)</td>
<td>Ipv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>IIVpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
<td>Ilpv</td>
</tr>
</tbody>
</table>

a Abbreviations: o, opisthe; OP, oral primordium; um, undulating membranes; Ipv–Vlo, primordia I–VI of opisthe; Ipv–Vlp, primordia I–VI of proter.

b The origin was ascertained by BERGER et al. (1985) from Figs. 3 and 4 in BUITKAMP (1975).

c Possibly originates from cirrus IV/3.

d In the type species, Sterkiella cavicola, primordia Vo and Vlo originate de novo (W. F., unpubl. data).

e Populations 3 and 4 in GANNER et al. (1987).
Figs. 44–48. Schematic illustration of character 23, ontogeny of the dorsal ciliature in oxytrichids. Arrows mark fragmentation of dorso marginal kinetics, arrowheads denote dorsomarginal kinetics. New dorsal kinetics narrowly, old (parental) ones widely spaced. Black squares are new caudal cirri, white squares are old ones. 44. The pleiomorphic Oxytricha pattern is characterized by fragmentation of dorsal kinety 3 and formation of one or two dorsomarginal kinetics. No parental ciliature is retained after division. 45. The Urosomoida pattern evolved from the Oxytricha pattern by the loss of fragmentation in kinety 3 and one of the two dorsomarginal kinetics. 46. The Gonostomum pattern evolved from the Urosomoida pattern by the loss of the dorsomarginal kinety. 47. The Tachysoma pellionellum pattern evolved from the Oxytricha pattern by additional fragmentation of dorsal kinety 2. 48. The Coniculostomum pattern evolved from the Oxytricha pattern by retention of some parental kinetics (asterisks). AZM = adoral zone of membranelles.

Sorting hypotrichs and evaluating their phylogenetic relationships was recognized only recently (Martin 1982; Foissner & Adam 1983b; Martin et al. 1983). All oxytrichids have at least three dorsal kinetics which form an anlage each in the proter and the opisthe by intrakinetal proliferation of basal bodies (Fig. 35). Furthermore, dorsomarginal kinetics (Martin 1982) originate from or very close to the primordium of the right marginal row (Fig. 26). However, specializations occur and thus five patterns of dorsal ciliature formation can be distinguished in the oxytrichid cladistically analyzed.

Oxytricha pattern (type 4 in Foissner & Adam 1983b; Fig. 44). Kinety 3 fragmentates into two unequal pieces, the posterior one becoming kinety 4, and one or two dorsomarginal kinetics are formed. This is the most common and thus very likely pleiomorphic state. It is found in many Oxytricha species and in all Oxytricha species and in all Onychodromopsis, Notothy- mena, Cyrtothy mena, Sterkiella, Histiculus, Stylonychia, and Steinia species investigated so far. This type occurs in no other group of hypotrichs, except for Gastrostyla and Paraurostyla genera usually considered to be closely related to the Oxytrichidae (Hemberger 1982; Wirnberger et al. 1985b, 1986; Fleury et al. 1992).

Urosomoida pattern (type 2 in Foissner & Adam 1983b; Fig. 45). Fragmentation of kinety 3 is lost and only one dor somarginal kinetics is formed. This pattern occurs in the genera Urosomoida and Urosoma and in some species of the genus Oxytricha (e.g., O. lanceolata; Berger & Foissner 1989a). These genera are in different clades, indicating that the loss of the fragmentation was independently achieved three times.

Gonostomum pattern (type 1 in Foissner & Adam 1983b; Fig. 46). New kinetics are formed only by intrakinetal proliferation of basal bodies. This strategy is confined to Gonostomum, and we assume that it evolved from the Urosomoida pattern by the loss of the dorsomarginal kinetics. Tachysoma pattern (Fig. 47). This configuration is unique to Tachysoma pellionellum, type of the genus. It differs from the ancestral state in that not only dorsal kinety 3 but also kinety 2 fragmentates. One dorsomarginal kinety is formed, so that altogether six dorsal kinetics are obtained as in the ancestral state (Hemberger 1982). Unfortunately, this pattern does not match that described for T. terricola (Hemberger 1982, 1985), which shows the Oxytricha pattern, suggesting that Tachysoma is not monophyletic.

Coniculostomum pattern (Fig. 48). This pattern is identical to the pleiomorphic state, except that some parental dorsomarginal kinetics are retained after division. The retention of a parental dorsal kinety in Parakahlilela, which very likely belongs to the Kahlililidae (Berger et al. 1985; Berger & Foissner 1989b; Eigner 1995), is rather likely a kind of parallelism.

Generally, two trends in dorsal ciliature formation can be observed within the Oxytrichidae. On the one hand a tendency to simplification (loss of fragmentation of dorsal kinety 3 and/or loss of dorsomarginal kinetics) in the soft-bodied genera and on the other hand a tendency to complication (multiple fragmentation, retention of parental kine-
ties) in the genera with a rigid body. Very likely, each of the derived states evolved independently from the pleiomorphic Oxytricha state – except for the Gonostomum pattern which is obviously a transformation of the Urosomoida pattern – because no parsimonious tree was obtained if, for instance, the simple Gonostomum pattern was used at the base of the cladogram. In this case it has to be assumed that dorsomarginal kinetics and fragmentation of dorsal kinety 3 evolved independently at least twice, which is unlikely.

Cladistic analysis

WIRNSBERGER et al. (1986) used HENNING’s cladistic method (HENNING 1982; AX 1984) to search for the branching sequences of seven common oxytrichid genera (their “oxytrichids s. str.”). Since then the number of genera has increased significantly and more data on morphology and morphogenesis available (BERGER & FOISSNER 1987, 1989a; GANNER et al. 1987; BLATTERER & FOISSNER 1988; FOISSNER 1989; KAMRA & SAPRA 1990; FOISSNER et al. 1991; VOSS 1991a, b; KAMRA et al. 1994; VOSS & FOISSNER 1995). Thus, a new attempt to elucidate the phylogenetic relationships within this family seemed appropriate. We used both the traditional method (Fig. 49a) and a computer program (Fig. 49b). As expected, the results (cladograms) were very similar. Thus, first the hand-generated tree is discussed followed by a discussion of the differences with the computer generated tree.

The autapomorphies of the Oxytrichidae are 18 characteristically arranged and evolving FVT cirri and fragmenting dorsal kinetics, as outlined by WIRNSBERGER et al. (1986). Both characters are slightly modified in Urosomoida, Urosoma, and Gonostomum. Some other genera, e.g. Paraurostyla, Gastrostyla, Laurentiella, and Tetriricha have a rather deviating cirral pattern, but fragmentation of dorsal kinety 3 occurs too, strongly suggesting a close relationship with the 18 FVT cirri oxytrichids. Very likely, molecular biological data are needed for a better classification of these genera.

The cladogram based on 21 characters divides the oxytrichids into two major branches, termed Oxytricha branch or subfamily Oxytrichinaceae and Stylonychida branch or subfamily Stylonychinae, respectively (Fig. 49a). The other clades are not named because, as is widely known, preliminary cladistic results suffer from the same instability as phenetic or intuitively derived classifications.

The Oxytricha branch: This clade is defined by a distinct ontogenetic autapomorphy, the participation of cirrus V/3 in primordia formation (character 19). The Gonostomum-Urosoma-Tachysoma lineage has primary primordia (character 16) as the sole synapomorphy. However, in Tachysoma primary primordia occur only in T. Pellionellum, the type of the genus, and not in T. terricola, the second species so far morphogenetically characterized (HEMBERGER 1982). Different strategies not only in the ventral but also in the dorsal morphogenesis suggest that Tachysoma is an artificial assemblage unified by the loss of caudal cirri, a character which very likely evolved independently in several oxytrichids, viz. Tachysoma, Histrichus, Pleurotricha, and Parastylonychia.

Gonostomum differs the most from the other oxytrichids treated in our paper. It has a peculiar oral apparatus (characters 1, 3) and an unusual position of the postoral ventral cirri right of the adoral zone of membranelles (Figs. 4, 52). Furthermore, the decreased number of transverse cirri and the simplification of dorsal ciliature formation (character state 23) are valuable autapomorphies. However, Gonostomum has synapomorphies (characters 1, 3, 12, 23) with Urosoma, supporting the sister group relationship proposed by FOISSNER (1983a), WIRNSBERGER et al. (1986) ignored the primary primordia (character 16) and the distinctive oral apparatus (characters 1, 3), but used the decreased number of pretransverse ventral and transverse cirri as autapomorphies. Thus, they arrived at Gonostomum and Urosomoida as sister groups. Kahlilli (BERGER & FOISSNER 1987) and Wallackia (BERGER & FOISSNER 1989a) have a similar oral apparatus as Gonostomum and Urosoma indicating parallelism or a close relationship of oxytrichids and kahlilliids, as recently proposed by EIGNER (1995).

The Oxytricha-Onychodromopsis-Urosomoida-Notothyma-Cyrtothymina lineage lacks an autapomorphy, i.e. its monophyly is questionable (Fig. 49a). However, two strong (ontogenetic) apomorphies occur in the following dichotomy, viz. special types of primordia formation (character states 17-1, 17-3), confirmed in seven species including the types. Unfortunately no autapomorphy could be found for Oxytricha, indicating an almost unchanged survival of the stem species and/or misidentified states of some characters. The important cladistic characters of Urosomoida are the loss of some pretransverse ventral and transverse cirri (characters 8, 9) and the loss of the fragmentation of dorsal kinety 3 (character state 23). These reductions also occur in the Urosoma-Gonostomum group and must thus be explained in Fig. 49a as parallelisms. We did not find a synapomorphy for the genera Notothyma and Cyrtothymina. However, both have a valuable autapomorphy, namely a distinctive pattern of the undulating membranes (character 3). Possibly, Cyrtothymina differs from Notothyma and Urosomoida in the origin of the anlagen II–V of the opisthe (Table 3). However, data on other Cyrtothymina species are needed to evaluate the significance of this difference.
Fig. 49a. Cladogram of common oxytrichid genera generated by the traditional method. Character states see Table 1 and section on characters and character states. Only autapomorphies (black squares) are shown. Parallelisms are starred.
Fig. 49b. Cladogram of common oxytrichid genera generated by computer analysis. The tree is the 50% majority-rule consensus of 72 trees. Length = 39 steps, RC = 0.94, RI = 97. Only autapomorphies are shown. Parallelisms are starred.
The Stylonchia branch: This clade (subfamily) is characterized by three autapomorphies, viz. the long oral apparatus (character 2), the rigid body (character 14), and the lack of cortical granules (character 15). Admittedly, these are not very strong characters, but we were unable to find better ones. However, the distinction is strongly supported by molecular biological data which show that Oxytricha granulifera (our Oxytricha branch) is distinctively separated from Stylonchia pusulata, Onychodromus quadricornutus, and “Oxytricha nova” (which in fact is a Sterkiella; Prescott, D. M. & Foisnner, W., unpubl. data), taxa having a rigid cortex and thus belonging to our Stylonchia branch.

Sterkiella is well defined by a unique, but sophisticated combination of morphological characters (body rigid or only slightly flexible, undulating membranes bent and intersecting, marginal rows separated posteriorly, caudal cirri present). However, the only autapomorphy we could find is the de novo formation of primordia V and VI of the opisthe (character 18).

Character 11, confluent marginal rows (Fig. 29), is a valuable autapomorphy of Histriscus. It is the last genus within the Stylonchia branch with the pleisiomorphic Oxytricha pattern of undulating membranes. However, Pleurotricha (excluded from the cladogram because of insufficient morphogenetic data) shows the same membrane pattern (Fig. 64) and also lacks caudal cirri (character 13), indicating a sister group relationship between Histriscus and Pleurotricha.

The Stylonchia-Coniculostomum-Steinlia group is characterized by parallel undulating membranes (character state 3–4). The cladogram reveals some peculiarities within this group: 1) Stylonchia pusulata and S. vorax are distinctly separate from the type species, S. mytilus, suggesting that Stylonchia is diphylectic. This is supported by molecular biological data (Schlegel & Steinbrück 1986); 2) Steinia is very likely the sister group of S. mytilus and Coniculostomum, because they share a peculiar morphogenetic feature, viz. primordia V and VI of the proter originate from cirrus V4 (character 17-3).

This is why we assume that the Steinia pattern of the undulating membranes (character state 3–5) is a transformation of the Stylonchia pattern (see character discussion). The peculiar fragmentation of the endoral in Steinia is one of the most impressive autapomorphies within the oxytrichids (Fig. 18); 3) Stylonchia mytilus is very likely more closely related to Coniculostomum (Kamra et al. 1994) than to S. pusulata, because of the identical origin of the FVT cirri primordia (Table 3 and Figs. 38, 43). This is sustained by their almost identical interphasic FVT cirral patterns (Figs. 61, 62). Thus, the classification of Coniculostomum in the Kahliellidae (Eigner 1995), based solely on the retention of some parental ciliature after division, is very likely artificial. It is highly unlikely that the distinctive 18 cirral pattern and morphogenesis found in Stylonchia mytilus and Coniculostomum evolved convergently. Autapomorphies of Coniculostomum are the moniliform macro-nucleus and an increased number of marginal rows and dorso-marginal kinetics due to retention of parental cirri (characters 10, 22) and dorso-marginal kinetics after division (characters 12, 23; Kamra et al. 1994).

Computer analysis using successive weighting yields 72 most parsimonious trees, which is high and largely due to the great number of parallelisms in combination with a rather low number of characters. However, the 50% majority consensus tree (Fig. 49b) is rather similar to that constructed by hand (Fig. 49a), especially concerning the basic branching into the monophyla Oxytrichinae and Stylochninae. Furthermore, the branching sequence within the Stylochninae is identical. Only character 17 is differently used, viz. state 17-3 is considered as further apomorphy of the Stylochninae and state 17-0 as apomorphy of the Stylonchia pusulata/vorax group.

The branching sequence in the Oxytrichinae is slightly different from the hand-generated tree, mainly due to the different use of characters 16, 17, and 23. However, this is not surprising because we were unable to define conclusively the pleisiomorphic and apomorphic states of these characters. The program assumes that fragmentation of dorsal kinety (character 23) was reduced only once, thus forming a Gonostomum-Urosoma-Tachysoma-Urosomoida group. However, this implies that fragmentation occurred again in Tachysoma. Conversely, we preferred the hypothesis that fragmentation of dorsal kinetics evolved only once, assuming that loss of fragmentation occurred twice, namely in Urosomoida and in the Gonostomum-Urosoma group. As in the Stylochninae, character 17 is also differently used in the Oxytrichinae, viz. de novo formation (state 17-1) is assumed as pleisiomorphic within the oxytrichids.

Characterization of the family Oxytrichidae, its subfamilies and genera

In this section traditional diagnoses are provided for the 18 FVT cirri oxytrichids we assign to the family. Still, some genera are not defined by a unique (autapomorphic) character but by a specific combination of pleisiomorphies, i.e. their monophyly and/or genus status are questionable. Thus, and because we did not name and characterize the sister groups of the two main branches obtained in the cladograms, the characterization of a genus includes all features necessary to separate it from the other genera of the subfamily it belongs to. Consequently, genus comparison is restricted to similar genera from the other subfamily with which it can be confused by non-specialists. Genera are arranged alphabetically within the subfamilies.
Family Oxytrichidae EHRENBG, 1838

Characterization: Euhypotrichina with flexible or rigid body and usually 18 FVT cirri clustered to six distinct groups. The FVT cirri originate from six longitudinal primordia segregating 1, 3, 3, 3, 4, 4 cirri. Six or less parental FVT cirri participate in primordia formation. At least one fragmenting dorsal kinety.

Type genus (original designation): *Oxytricha BORY DE SAINT-VINCENT in LAMOURoux, BORY DE SAINT-VINCENT & DESLONGCHAMPS, 1824.

Remarks: Jankowski (1979) split the Oxytrichidae into three subfamilies, viz. *Oxytrichina* (type *Oxytricha*), *Ancystropodinae* (type *Ancystropodium*), and *Psammomitrinae* (type *Psammomitra*). The Oxytrichinae include all 18 FVT cirri oxytrichids, the Ancystropodinae are monotypic, and the Psammomitrinae are an artificial assemblage including poorly known genera, some of which have been assigned to other families. Thus, we establish a new subfamily for the oxytrichids of the *Stylonychia* branch.

Subfamily Oxytrichinae JANKOWSKI, 1979

Characterization: Oxytrichidae with flexible body. Cirrus V/3 participates in primordia formation. Often with distinct cortical granules.

Type genus (original designation): *Oxytricha BORY DE SAINT-VINCENT in LAMOURoux, BORY DE SAINT-VINCENT & DESLONGCHAMPS, 1824.

Remarks: This subfamily contains the genera *Cylrohymena*, *Gonostomum*, *Notohymena*, *Onychodromopsis*, *Oxytricha*, *Tachysoma*, *Urosoma*, and *Urosomoida*. Very likely, *Parasoroma*, *Pseudostrombidium*, and *Australocirrus oscitans* also belong to this assemblage, because they have a flexible body. However, this has to be confirmed by morphogenetic studies.

- *Australocirrus* BLATTERER & FOISSNER, 1988 (Fig. 50)

Improved characterization: Adoral zone of membranelles formed like a question mark. Undulating membranes in *Oxytricha* pattern. Frontoventral cirri form V-shaped pattern. Postoral ventral cirri underneath buccal vertex. Two pretransverse ventral and five transverse cirri. One right and one left row of marginal cirri. More than six dorsal ketines. Caudal cirri present. Dorsal morphogenesis in *Oxytricha* pattern, however, kinety 3 not with simple but with multiple fragmentation.

Type species (original designation): *Australocirrus oscitans* BLATTERER & FOISSNER, 1988.

Remarks: The two species known show multiple fragmentation of dorsal kinety 3, but differ significantly in body flexibility. In the very flexible *A. oscitans* cirrus V/3 is involved in primordia formation (W. F., unpubl. data), supporting the classification in the *Oxytricha* branch. By contrast, the body of *A. octonucleatus* is rigid, indicating some relationship with *Sterkiella*; however, *Sterkiella* has simple fragmentation of dorsal kinety 3.

- *Cylrohymena* FOISSNER, 1989 (Fig. 51)

Type species (original designation): *Oxytricha (Steiniia) muscorum* KAHL, 1932.

Remarks: This genus is well defined and easily identified by the wide, deep and thus very transparent buccal cavity. However, some species (e.g., *C. quadrunucleata*, *C. tetracirrata*, *C. primicirrata*) deviate from the majority in that the body is rather inflexible, the relative length of the adoral zone is 40–50% of body length, and postoral ventral cirrus V/3 is distinctly displaced posterior, indicating that it is not involved in primordia formation. Thus, *Cylrohymena* is very likely not monophyletic. By non-specialists in vivo easily confused with *Steiniia* which has, however, a very rigid body and a peculiar pit in the buccal cavity (Fig. 27, arrow).

- *Gonostomum* STERKI, 1878 (Fig. 52)

Synonymy: Plagiotricha KENT, 1882 (type species by original designation): *Oxytricha strenua* ENGELMANN, 1862.

Type species (original designation): *Oxytricha affinis* STEIN, 1859.

Remarks: *Gonostomum* is sometimes classified outside the oxytrichids, viz. in the Holostichidae (CORLISS 1979; TUFFRAU 1987) or *Gonostomatiidae* (SMALL & LYNN 1985). However, ventral morphogenesis shows that *Gonostomum* evolved very likely from 18 FVT cirri oxytrichids (BORROR 1972; FOISSNER 1982; HEMBERGER 1982; SONG 1990; TUFFRAU & FLEURY 1994). In vivo easily distinguished from almost all genera (except the sister group *Urosoma*) of the oxytrichids by the dis-
tinctive shape of the adoral zone of membranelles and the widely spaced cilia of the paroral (Figs. 16, 22, 23). These characters are strongly reminiscent of "Kahliella" and "Wallackia" (BERGER & FOISSNER 1989a), which have, however, many more cirral rows. The type species, "Gonostomum affine," is the most common hypotrich in soil (FOISSNER 1987c).

- **Notohymena Blatterer & Foissner, 1988** (Fig. 53)

Type species (original designation): *Notohymena rubescens* Blatterer & Foissner, 1988.

Remarks: The cladistically significant character, viz. the hook-shaped distal end of the paroral, is recognizable only after protargol impregnation (Fig. 14). Sterkiella and Steinia have a broader and more rigid body. In addition, *Notohymena* species possess distinct cortical granules, organelles lacking in all genera of the subfamily Stylonychinae.

- **Onychodromopsis Stokes, 1887** (Fig. 54)

Improved characterization: Adoral zone of membranelles formed like a question mark. Undulating membranes rather straight and arranged side by side or in *Oxytricha* pattern. Frontoventral cirri in V-shaped pattern. Postoral ventral cirri in dense cluster underneath buccal vertex. Two pretransverse ventral and five transverse cirri. Two or more right and one or more left rows of marginal cirri. Caudal cirri present. Primordia V and VI of the proter originate from cirrus V/4 and V/3, respectively. No parental marginal rows retained after division. Dorsal morphogenesis in *Oxytricha* pattern.

Type species (by monotypy): *Onychodromopsis flexilis* Stokes, 1887.

Remarks: *Onychodromopsis* has been rather differently classified, e.g. as incertae sedis in the Sporadotrichina (CORLISS 1979), in the Holostichidae (TUFFRAU 1987), in the Amphisiellidae (SMALL & LYNN 1985; TUFFRAU & FLEURY 1994), or as synonym of *Pleurotricha* (BORRAR 1972), which has, however, a rigid body and lacks caudal cirri. The reinvestigation of the type species revealed that *Onychodromopsis* is very likely the sister group of *Oxytricha* (PETZ & FOISSNER 1996). *Onychodromopsis flexilis* has undulating membranes arranged almost in parallel (Fig. 54), indicating that a *Stylonychia*-like pattern evolved also in the *Oxytrichinae*. However, other *Onychodromopsis* species have the plesiomorphic *Oxytricha* pattern. *Onychodromopsis* is easily confused with *Paraurostyla*, because of the increased number of cirral rows (FOISSNER et al. 1991).

- **Oxytricha Bory de Saint-Vincent in Lamouroux, Bory de Saint-Vincent & Deslongchamps, 1824** (Fig. 55)

Synonymy: *Oxytricha* Bory de Saint-Vincent in Lamouroux et al., 1824 (no type species fixed, see remarks); *Actinotricha* Cohn, 1866 (type species by monotypy: *Actinotricha saltans* Cohn, 1866); *Opisthotricha* Kent, 1882 (type species by original designation: *Oxytricha parallela* Engelmann, 1862).

Improved characterization: Adoral zone of membranelles formed like a question mark. Undulating membranes in *Oxytricha* pattern. Frontoventral cirri in V-shaped pattern. Postoral ventral cirri in dense cluster underneath buccal vertex. Two pretransverse ventral and five, rarely four transverse cirri. One right and one left row of marginal cirri. Usually five or six, rarely four dorsal kinetics. Caudal cirri present. Primordia V and VI of the proter originate from cirrus V/4 and V/3, respectively. Dorsal morphogenesis in *Oxytricha* or *Urosomoida* pattern.

Type species (subsequent designation by FOISSNER 1989): *Oxytricha granulifera* Foissner & Adam, 1983b.

Remarks: BORY DE SAINT-VINCENT in Lamouroux et al. (1824) used the spelling *Oxisticha* when establishing the genus. The first reviser (Ehrenberg 1838) changed it to *Oxytricha*, subsequently accepted by all revisers (KAHL 1932; BORRAR 1972; CORLISS 1979). For a detailed discussion of the rather complicated type species problem, see FOISSNER (1989). *Oxytricha* is the most voluminous genus within the oxytrichids, comprising about 50 valid species and about 60 species indeterminata (H. B., unpubl. data). Only a quarter of the valid species has been described in detail. *Actinotricha* is a little known genus which has been synonymized with *Tachysoma* (Borror 1972) and *Oxytricha* (Song et al. 1991). Very likely, it is closely related to the *O. setigera* group because the frontoventral cirri are distinctly displaced posteriorly. *Opisthotricha* was established for *Oxytricha* species with long caudal cirri (Kent 1880–1882). However, this feature is valuable for species distinction only. Non-specialists easily confuse *Oxytricha* with the styloynchid genera *Sierkiella* (body only slightly flexible, posterior postoral ventral cirrus V/3 distinctly separated from cirrus V/4 and V/2; see the "Oxytricha nova" problem mentioned in the introduction). *Histrisculus* (body very rigid, confluent marginal rows, no caudal cirri) and *Stylonychia* (body very rigid, undulating
membranes side by side) where cirrus V/3 is, however, not involved in primordia formation.

- *Pararosoma* Gelei, 1954 (Fig. 56)

Improved characterization: Adoral zone of membranelles, undulating membranes, and frontoventral cirri similar to in *Urosoma*. Postoral ventral cirri in dense cluster underneath buccal vertex. Two pretransverse ventral and five transverse cirri. Two right and two left rows of marginal cirri. Four, sometimes five dorsal kinetics. Caudal cirri present. Dorsal morphogenesis very likely in *Urosomoida* pattern.

Type species (by monotypy): Holostichia (Pararosoma) dubium Gelei, 1954.

Remarks: Monotypic, i.e. includes only the type species, which has to be redescribed in detail. Gelei (1954) classified Pararosoma as subgenus of Holostichia. Thus, Corliss (1979) and Tufferau (1987) included it in the family Holostichidae. Borror (1972) synonymized it with Pleurotrichia, which has, however, a rigid body and lacks caudal cirri.

- *Pseudostrombidium* Horváth, 1933 (Fig. 57)

Improved characterization: Adoral zone of membranelles formed like a question mark. Undulating membranes almost straight and side by side. Frontoventral cirri in V-shaped pattern. Postoral ventral cirri in dense cluster underneath buccal vertex. Two pretransverse ventral and five transverse cirri. One right and one left row of marginal cirri. Six dorsal kinetics. Number of caudal cirri distinctly increased (>4). Dorsal morphogenesis in *Oxytricha* pattern.

Type species (by monotypy): Pseudostrombidium planctonicum Horváth, 1933.

Remarks: Monotypic, i.e. includes only the euplanktonic type species. Kahl (1932) obviously confused Pseudostrombidium with *Parastrombidium* (Fraure-Fremiet 1924), an oligotrich. Borror (1972) synonymized *P. planctonicum* with *Urosoma acuminata* which is clearly different (Foissner 1982, Berger & Foissner 1987). According to the original description and a recent redeposition (Wilbert 1986), the undulating membranes are rather straight and do not intersect, similarly to in *Stylonychia* (Fig. 57). However, the micrographs of a protargol impregnated specimen in Skibbe (1994) indicate an oral apparatus of the *Oxytricha* pattern. Differs from *Stylonychia* spp. not only by the supple body but also by the significantly higher number of caudal cirri. Morphogenetic studies are necessary to clarify the systematic position of this curious oxytrichid.

- *Tachysoma* Stokes, 1887 (Fig. 58)

Improved characterization: Adoral zone of membranelles formed like a question mark. Undulating membranes in *Oxytricha* pattern. Frontoventral cirri in V-shaped pattern. Postoral ventral cirri in dense cluster underneath buccal vertex. Two pretransverse ventral and five transverse cirri. One right and one left row of marginal cirri. Four to six dorsal kinetics. Caudal cirri absent. FVT-cirri originate from primary primordia or separate anlagen. Dorsal morphogenesis in *Tachysoma, Oxytricha, or Urosomoida* pattern.

Type species (subsequent designation by Borror 1972): *Trichoda pellionella* Müller, 1773.

Remarks: Very likely an artificial assemblage of flexiboloxytrichids without caudal cirri. The type species is one of the most common oxytrichids in freshwater (Foissner et al. 1991). *Histricalus* also lacks caudal cirri, but is broader and much more rigid.

- *Urosoma* Kowalewskiego, 1882 (Fig. 59)

Improved characterization: Adoral zone of membranelles and undulating membranes in *Gonostomum* pattern. Frontoventral cirri arranged in a row with anterior cirrus usually slightly displaced to left. Postoral ventral cirri in dense cluster underneath buccal vertex. Two pretransverse ventral and five transverse cirri. One right and one left row of marginal cirri. Four dorsal kinetics. Caudal cirri present. Primary primordia. Dorsal morphogenesis in *Urosomoida* pattern.

Type species (by monotypy): Urosoma cienkowskii Kowalewskiego, 1882.

Remarks: Most species assigned to this genus are slender and posteriorly more or less distinctly narrowed. However, the only autapomorphy we could find is the arrangement of the frontoventral cirri (Fig. 2). The same pattern occurs in some species originally assigned to the genera *Perisincirra* (*P. similis* Foissner, 1982) and *Hemisincirra* (*H. poly nucleata* Foissner, 1984). This character and the agreements in the oral apparatus and dorsal infraciliature indicate that they might belong to *Urosoma*, although the FVT cirri underneath the adoral zone are partially or completely reduced. Very likely, *P. similis* and *H. poly nucleata* form a distinct clade in *Urosoma*. Alive and in protargol slides, *Urosoma* is easily distinguished from all genera of the subfamily Stylonychinae by the short (<30% of body length) adoral zone of membranelles and the slender body.

- *Urosomoida* Hemberger in Foissner, 1982 (Fig. 60)

Improved characterization: Adoral zone of membranelles formed like a question mark. Undulating membranes in *Oxytricha* pattern. Frontoventral cirri in V-shaped pattern. Postoral ventral cirri in dense cluster underneath buccal vertex. One pretransverse ventral cirrus and less than four transverse cirri. One right and one left row of marginal cirri. Four dorsal kinetics. Caudal cirri present. Primordia V and VI of the proter origi-
nate de novo. Dorsal morphogenesis in *Urosomoida* pattern.

Type species (original designation): *Uroleptus agilis* ENGELMANN, 1862.

Remarks: FOISSNER (1982) published the diagnosis proposed by HEMBERGER (1982) verbatim. Thus, the appropriate citation of the genus is “HEMBERGER in FOISSNER 1982” (article 50a of the ICZN 1985). Some species can be confused with *Sterkiella* spp., which have, however, a broader and less flexible body. Often difficult to separate from *Oxytricha*.

Subfamily Styloynchinae n. subfam.

Characterization: Oxytrichidae with rigid body. Cirrus V/3 not involved in primordia formation.

Type genus: *Styloynchia* EHRENBERG, 1830.

Remarks: This subfamily includes the genera of the *Styloynchia* branch in our cladograms (Figs. 49a, b), viz. *Coniculostomum*, *Hisitrucus*, *Steinia*, *Sterkiella*, and *Styloynchia*. Furthermore, *Parastylonychia* and *Pleurotricha* are assigned to this subfamily because they have a rigid body, a rather unique character within the euhypotrichs. The other two autapomorphies shown in the cladogram, the relative length (≥40%) of the adoral zone and the lack of cortical granules are rather weak and were thus not used in the characterization. Very likely, *Onychodromus*, *Laurentiella*, and *Pattersoniella* belong to this subfamily, too (see section genera not considered). Their exact position within the cladogram is, however, beyond the scope of the present paper.

- *Coniculostomum* NHINE, 1979 (Fig. 61)

Synonymy: *Laurentiella* (Laurosticha) JANKOWSKI, 1979 (type species by original designation: *Laurentia monilata* DRAGESCO & NHINE, 1971).

Improved characterization: Undulating membranes in *Styloynchia* pattern. Two or more right and one or more left marginal rows, distinctly separate posteriorly. More than six dorsal kinetics. Caudal cirri present and usually distinctly elongated. Primordium II of the proter originates from oral primordium. Primordia V and VI of the proter and primordium IV of the opisthe originate from postoral ventral cirrus V/4. Parental marginal cirri partially retained after division. Dorsal morphogenesis in *Coniculostomum* pattern.

Type species (by monotypy): *Laurentia monilata* DRAGESCO & NHINE, 1971.

Remarks: The subgenus *Laurosticha* JANKOWSKI, 1979 was published in the same year as *Coniculostomum* which prevailed. The oxytrichid lineage of this peculiar genus was recognized only recently by detailed morphogenetic studies (KAMRA & SAPRA 1990; KAMRA et al. 1994) showing several conspicuous synapomorphies with the *Styloynchia mytilus*-complex. Thus, a classification within the kahlilellids (EIGNER 1995), based solely on the retention of parental marginal rows and dorsal kinetics, is very likely artificial.

- *Hisitrucus* CORLISS, 1960 (Fig. 31)

Synonymy: *Hisistrio* STERKI, 1878 (type species by original designation: *Hisistrion steari* STERKI, 1878, a junior synonym of *Histriscus histrio*); (?) *Parahistriculus* GROLIÈRE, 1975 (type species by monotypy: *Parahistriculus minimus* GROLIÈRE, 1975).

Improved characterization: Undulating membranes in *Oxytricha* pattern. One right and one left row of marginal cirri, posteriorly confluent. Six dorsal kinetics. Caudal cirri absent. Dorsal morphogenesis in *Oxytricha* pattern.

Type species (original designation): *Paramaecium histrio* MULLER, 1773.

Remarks: *Hisistrion steari* is a junior homonym replaced by CORLISS (1960). *Parahistriculus minimus* GROLIÈRE, 1975 differs in the dorsal pattern (four kinetics only), so that the synonymy is questionable. *Oxytricha* and related genera have a very supple and slender body, open marginal rows, and caudal cirri.

- *Parastylonychia* DRAGESCO, 1963 (Fig. 63)

Improved characterization: Undulating membranes in *Styloynchia* pattern. One right and one left row of marginal cirri, distinctly separate posteriorly. Caudal cirri absent.

Type species (by monotypy): *Parastylonychia plouneourii* DRAGESCO, 1963.

Remarks: Monotypic i.e. includes only the type species. A detailed redescription and morphogenetic data are required for a more exact classification of this marine species.

- *Pleurotricha* STEIN, 1859 (Fig. 64)

Synonymy: *Allostrichia* STERKI, 1878 (type species by original designation: *Allostricha mollis* STERKI, 1878, a nomen nudum species).

Improved characterization: Undulating membranes in *Oxytricha* pattern. Two or more right and one or more left rows of marginal cirri. Caudal cirri absent. No parental marginal cirri retained after division. Dorsal morphogenesis in *Oxytricha* pattern.

Type species (original designation): *Styloynchia lanceolata* EHRENBERG, 1835.

Remarks: The inner right marginal row of the type species develops according to character state 22-1 (Table 1; BORROR & WICKLOW 1982). In contrast, in *Coniculostomum* parental right marginal cirri are retained and form some inner right marginal rows (KAMRA & SAPRA 1990). Detailed morphogenetic studies are necessary to clarify the position of *Pleurotricha*.

within the cladogram. Possibly, it is closely related to *Histrichulus* because of the lack of caudal cirri. *Ontyochodromopsis* and *Parurosoma* have a more slender and supple body and caudal cirri.

• *Steinia* Diesing, 1866 (Fig. 65)

Improved characterization: Undulating membranes in *Steinia* pattern. One right and one left row of

Type species (subsequent designation by Foissner 1989): *Oxytricha playstomata* Ehrenberg, 1831.

Remarks: By non-specialists in vivo easily confused with *Cyclopyrema* because the large buccal cavity is transparent in both genera. However, *Cyclopyrema* lacks the small pit in the buccal cavity (Fig. 27, arrow) and usually has a more flexible body.

- *Sterkiella* Foissner, Blatterer, Berger & Kohmann, 1991 (Figs. 1, 66)

Improved characterization: Undulating membranes in *Oxytricha* pattern. One right and one left row of marginal cirri, distinctly separate posteriorly. Six dorsal kineties. Caudal cirri present. Primordia V and VI of the opisthe originate de novo. Dorsal morphogenesis in *Oxytricha* pattern.

Type species (original designation): *Oxytricha cavicola* Kahl, 1935.

Remarks: *Sterkiella histriomuscorum* is very common in freshwater and soil (Foissner et al. 1991) and has often been misidentified as *Oxytricha* sp. because it is not as rigid as the other members of the Stylonychinae. The autapomorphy (character 18) has been confirmed in the type species only (W. F., unpubl. data).

- *Stylonychia* Ehrenberg, 1830 (Fig. 62)

Improved characterization: Undulating membranes in *Stylonychia* pattern. One right and one left row of marginal cirri, distinctly separate posteriorly. Six dorsal kineties. Caudal cirri present and often distinctly elongated. Primordium II of the proter originates from oral primordium. Primordia V and VI of the proter originate from frontoventral cirrus IV/3 or from postoral ventral cirrus V/4. Primordium IV of the opisthe originates from postoral ventral cirrus V/4. Dorsal morphogenesis in *Oxytricha* pattern.

Type species (subsequent designation by Fromentel 1875): *Trichola mytilus* Müller, 1773.

Remarks: Morphogenetic (characters 17, 20, 21) and molecular biological data (Schlegel & Steinbrück 1986) suggest that *Stylonychia* is not monophyletic (Figs. 49a, b). However, molecular biological data on the closely related genera *Steinia* and *Coniculostomum* should be awaited before splitting. In vivo, small species, for instance the very common *S. pusulata*, are easily confused with *Oxytricha* spp., which have, however, a more slender and flexible body and intersecting undulating membranes.

Key to oxytrichid genera

For definition of term see section characters and Figs. 1, 6. Many characters can be recognized by careful examination of living specimens with differential interference contrast. However, this requires a lot of experience. Thus, we base the key mainly on characters recognizable after protargol impregnation, a well-known and widely used technique for identifying ciliates (Foissner 1991). Keys for the most common freshwater oxytrichid species are found in Kahl (1932), Foissner et al. (1991, 1995), and Foissner & Berger (1996). Species with distinct cortical granules (Fig. 28) belong to the subfamily Oxytrichininae.

1. One right and one left row of marginal cirri (Fig. 1) . . 5
 - Two or more right and one or more left rows of marginal cirri ... 2
2. Caudal cirri present ... 3
 - Caudal cirri absent ... Pleurotricha (Fig. 64)
3. Body tailed ... Pararasoma (Fig. 56)
 - Body not tailed ... 4
4. Adoral zone of membranelles about 50% of body length. Macronucleus moniliform. Body rigid ... Coniculostomum (Fig. 61)
 - Adoral zone of membranelles <35% of body length. Two macronuclear nodules. Body supple ... Onychodromopsis (Fig. 54)
5. Undulating membranes in Steinia pattern (Figs. 12, 18, 25) ... Steinia (Fig. 65)
 - Undulating membranes not as above ... 6
6. Undulating membranes in Cyrtolyhymena pattern (Figs. 9, 15, 21) ... Cyrtolyhymena (Fig. 51)
 - Undulating membranes not as above ... 7
7. Undulating membranes in Notolyhymena pattern (Figs. 8, 14) ... Notolyhymena (Fig. 53)
 - Undulating membranes not as above ... 8
8. Undulating membranes and adoral zone of membranelles in Gonostomum pattern (Figs. 4, 10, 16, 22) 9
 - Undulating membranes and adoral zone not as above ... 10
9. Adoral zone of membranelles <30% of body length. Four dorsal kineties ... Urosona (Fig. 59)
 - Adoral zone of membranelles 40–50% of body length. Three dorsal kineties ... Gonostomum (Fig. 52)
10. Undulating membranes in Stylonychia pattern (Figs. 11, 17, 24) ... 11
 - Undulating membranes in Oxytricha pattern (Figs. 1, 7, 13, 19) ... 12
11. Caudal cirri present (Fig. 6) . . Stylonychia (Fig. 62)
 - Caudal cirri absent ... Parastylonychia (Fig. 63)
12. Caudal cirri present (Fig. 6) ... 14
 - Caudal cirri absent ... 13

1) Sometimes difficult to distinguish from marginal cirri, which usually insert more ventrally than caudal cirri (Fig. 6). Most easily recognizable in late dividers having the caudal cirri still attached to certain dorsal kineties (Fig. 44).
13. Marginal rows distinctly separate posteriorly. Body supple Tachysoma (Fig. 58).
 - Marginal rows confluent posteriorly (Figs. 29, 31). Body rigid Histrichus (Fig. 31).
14. Number of pretransverse ventral and transverse cirri usually <6 (Fig. 5). Four dorsal kinetics Urosomma (Fig. 60).
 - Two pretransverse ventral and four or five transverse cirri (Fig. 1). Usually five or more dorsal kinetics 15.
15. Number of caudal cirri distinctly increased (10–20) forming rather dense corona at rounded posterior end of organism Pseuodostrombidium (Fig. 57).
 - Usually three caudal cirri 16.
16. Dorsal kinety 3 with multiple fragmentation, i.e. more than six dorsal kinetics Australocirrus (Fig. 50).
 - Five (rarely four) to six dorsal kinetics 17.
17. Adoral zone of membranelles ≤35% of body length. Postoral ventral cirri form narrow group close beneath buccal vertex. Ratio of body width to length ≤40%, usually about 30%. Body supple Oxytricha (Fig. 55).
 - Adoral zone of membranelles ≥40% of body length. Postoral ventral cirrus V/3 distinctly set off from the other two postoral cirri (Figs. 1, 66). Ratio of body width to length ≥40%. Body rigid or slightly flexible Sierkia (Figs. 1, 66).

Acknowledgements: Supported by the Bayerisches Landesamt für Wasserwirtschaft and the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (Project PO 8924-BIO). The technical assistance of Dr. Eva Herzog, Mag. Karin Gschwind, Dr. Wolfgang Peitz, Andreas Zankl, and Mag. Erich Strobl is greatly acknowledged. We thank Prof. Dr. Martin Schlegel (University of Leipzig) and Dr. Gerhard Steiner (University of Vienna) for their assistance with the computer program.

References

 - (1988a): The morphogenesis of Kahlia franzsi (Foissner, 1982) nov. comb. and Oxytricha gigantea

Accepted: November 26, 1996

Authors’ addresses: Dr. HELMUT BERGER and Prof. Dr. WILHELM FOISSNER, Universität Salzburg, Institut für Zoologie, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria (Europe). Permanent address of Dr. HELMUT BERGER: Technisches Büro für Ökologie, Radetzkystrasse 10, A - 5020 Salzburg.