Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA

Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4

1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA

Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, although support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.

Key words: Ciliophora, Colpodea, mitochondria, phylogeny, Phyllopharyngea, SSU-rDNA.

INTRODUCTION

Ciliates are a diverse clade of microbial eukaryotes with an estimated 10,000 described morphospecies with highly variable morphologies (Foissner et al. 2008, Lynn 2008). Molecular phylogenetic inferences for most of the ciliate tree of life have relied on sequencing the nuclear small subunit rDNA (nSSU-rDNA) locus (e.g., Utz et al. 2010, Vd’ačný et al. 2010, Yi et al. 2010, Bachy et al. 2012, Zhan et al. 2013). These nSSU-rDNA studies, along with numerous morphological observations, have led to the ciliates currently being classified into 12 major clades, or classes (Lynn 2008, Adl et al. 2012).

There is little additional molecular data for, or against, the proposed major ciliate clades from non-linked loci, or from loci that are likely not subject to paralogy (Israel et al. 2002, Dunthorn and Katz 2008,
Yi et al. 2012). Recently, mitochondrial SSU-rDNA (mtSSU-rDNA) sequences were shown to effectively uncover deep nodes within the Colpodea (Dunthorn et al. 2011, 2012a), as well as in shallower nodes among isolates of the morphospecies Chilodonella uncinata (Katz et al. 2011). Here we evaluate the efficacy of mtSSU-rDNA for inferring deep nodes among diverse ciliate taxa. Our broad taxon sampling of mtSSU-rDNA from across the ciliates tree of life results in support for some of the deep nodes that were inferred also from morphology and nSSU-rDNA.

 METHODS

 Taxon sampling and classification

 Isolates of twelve ciliate morphospecies were newly sequenced for mtSSU-rDNA, 5 of which were also sequenced for nSSU-rDNA (Table 1). DNA for Acineta sp., Chlamydomonex excella, Chlamydomonex triquetra, Dininium sp., Dysteria sp., and Heliophrya sp. came from Snoeyenbos-West et al. (2004). DNA for Vorticella astyformis came from Foissner et al. (2009). Isolates of Coleps sp., Colpidium sp., and Metaphoricalina sp. are from collections made by Katz and colleagues from the environment, and isolates for Spirostomum sp. and Stentor sp. were purchased from Connecticut Valley Biological Supplies (Southampton, MA). Additional nuclear and mitochondrial SSU-rDNA sequences came from GenBank (Table 1). Plasmodium falciparum was used as outgroup. Classification follows Adl et al. (2012).

 Sequencing and phylogenetic analyses

 DNA was extracted, amplified and sequenced for mtSSU-rDNA and nSSU-rDNA following Dunthorn et al. (2011) and Katz et al. (2011). Sequences were analyzed and polymorphisms confirmed using overlapping sequence reads in SeqMan (DNASTar, Inc., Madison, WI). New mtSSU-rDNA sequences were added to the alignment of Dunthorn et al. (2011) by pairwise alignments in MacClade v4.05 (Madison and Maddison 2005). Nuclear SSU-rDNA sequences were aligned using Hmmer v2.1.4 (Eddy 2001), with default settings. The training alignment for model building was all available ciliate SSU-rDNA sequences downloaded from the European Ribosomal Database (Wuyts et al. 2004) and aligned according to their secondary structure. Both these alignments were further adjusted, and ambiguously aligned positions masked, in MacClade. A third alignment was made by concatenating the mtSSU-rDNA and nSSU-rDNA alignments.

 Phylogenetic analyses of these three alignments used the GTR-I-F model of substitution. Maximum likelihood (ML) analyses were carried out in RaxML-HPC v7.2.5 (Stamatakis 2006). Support came from a majority rule consensus tree of 1000 bootstrap replicates. Bayesian inference (BI) analyses were carried out using MrBayes v3.2.1 (Ronquist and Huelsenbeck 2003). Posterior probability was estimated using four chains running 20 million replicates. Bayesian inference (BI) analyses were carried out using RaxML-HPC v7.2.5 (Stamatakis 2006). Support came from a majority rule consensus tree of 1000 bootstrap replicates.
or to constructing a 50% majority rule consensus trees. Trees were visualized with FigTree v1.3.1 (Rambaut 2006). For ML analyses we consider bootstraps values < 70% low and unsupported, 70–94% moderately supported, and ≥ 95% highly supported (Hillis and Bull 1993); for BI analyses we consider posterior probabilities ≤ 94% low and unsupported, and ≥ 95% highly supported (Alfaro et al. 2003).

RESULTS AND DISCUSSION

A broadly sampled mtSSU-rDNA ciliate tree of life

Almost all that we know of the deepest relationships within the ciliate tree of life come from morphological observations of a few key characters, and from molecular analyses of the nSSU-rDNA locus (Dunthorn and Katz 2008, Lynn 2008). Using these complementary data, ciliates have been classified into 12 major clades (e.g., Adl et al. 2012): Heterotrichia and Karyorelictea (both in the Postciliodesmatophora), and other lineages in the Intramacronucleata. Within the Intramacronucleata, the Armophorea, Cariacothrix, Litostomatea, and Spirotrichea are thought to be sister to the clade that contains Colpodea, Oligohymenophorea, Nassophorea, Phyllopharyngea, Plagiopylela, and Prostomatea (Riley and Katz 2001, Lynn 2003, Gong et al. 2009, Phadke and Zufall 2009, Vďačný et al. 2010, Adl et al. 2012, Dunthorn et al. 2012b, Orsi et al. 2012).

Mitochondrial SSU-rDNA here infers some of the same, or similar, deep relationships that nSSU-rDNA infers within the ciliate tree of life (Fig. 1). The Heterotrichia are sister to all other sampled ciliates, but node support is low (< 50% ML bootstrap/ 82% Bayesian posterior probability). The rest of the taxa, all in the Intramacronucleata, form a monophyletic group with low to high node support (53/100). The Oligohymenophorea is not monophyletic, with only one intervening node being low to highly supported (68/100). Within the Oligohymenophorea, Tetrahymena is not monophyletic as Colpidium sp. nests within it, but node support is low (51/90). The two sampled Paramecium (Oligohymenophorea) species are sister to Didinium (Litostomatea) with variable node support (50/98). With the same taxon sampling as mtSSU-rDNA, the nSSU-rDNA (Fig. 2) and concatenated (Fig. 3) trees largely infer the same topologies for well-supported nodes. The Heterotrichia is monophyletic with high node support, while the Oligohymenophorea is monophyletic with low node support. In both the nSSU-rDNA and concatenated trees, Litostomatea is sister to the Heterotrichia, which would render the Intramacronucleata non-monophyletic, but in both trees this relationship has low node support. There are no mtSSU-rDNA sequences from the Karyorelictea, thus conclusions cannot be drawn the monophyly of the Postciliodesmatophora.

mtSSU-rDNA supports the monophyly of the Colpodea

In previous studies, monophyly of the Colpodea was supported initially in nSSU-rDNA analyses (Stechmann et al. 1998, Lynn et al. 1999, Lasek-Nesselquist and Katz 2001). A later nSSU-rRNA analysis based on broader taxon sampling both within this taxon, as well as among close outliers, inferred a non-monophyletic Colpodea with low node support (Dunthorn et al. 2008). Subsequent nSSU-rRNA studies did not include enough outgroups to be effective tests (Dunthorn et al. 2009; Bourland et al. 2011, 2012; Foissner et al. 2011; Quintela-Alonso et al. 2011). Effective testing for monophyly was also precluded in two mtSSU-rDNA analyses of the Colpodea due to low taxon sampling among potential outgroups (Dunthorn et al. 2011, 2012a).

With new mtSSU-rDNA sequences and the increased taxon sampling of potential outgroups, we find that molecules once again infer a monophyletic Colpodea (Fig. 1). This monophyly is not supported by ML bootstraps, but highly supported by BI posterior probability (59/95). This result supports the morphological hypothesis that ciliates with a LkM fiber in their somatic ciliature should be united into a single taxon (Lynn 1976, Small and Lynn 1981, Foissner 1993). With the same taxon sampling, nSSU-rDNA (Fig. 2) and concatenated (Fig. 3) trees also infer a monophyletic Colpodea, with strong node support coming only from the concatenated tree (91/100).

mtSSU- and nSSU-rDNA are congruent for the Phyllopharyngea

The Phyllopharyngea are recognized by phylae surrounding the cytopharyngeal apparatus, and include free-living and symbiotic species (Lynn 2008). Some members also have sucking tentacles (Matthes 1988, Lynn 2008). The first nSSU-rDNA analysis using broad taxon sampling of the morphologically defined subgroups within the Phyllopharyngea inferred the Suctoria as a clade sister to the Cytophoria (= Phyllopharyngia) (Snoeyenbos-West et al. 2004). Additionally, within the Cytophoria, Chilodonella was inferred to be sister to the clade formed by Chlamydodon and Dysteria, thus
rendering the Chlamydodonta (which includes *Chi-
lodonella* and *Chlamydonodon*) non-monophyletic (Sno-
eyenbos-West *et al.* 2004). Later nSSU-rDNA analyses
with additional taxon sampling confirmed this result (Li
and Song 2006a, b; Gong *et al.* 2008; Gao *et al.* 2012).

With the new taxon sampling, we find that mtSSU-
rDNA likewise infers *Acineta* sp. and *Heliophrya er-
hardi*, both in the Suctoria, as a clade sister to the other
sampled Phyllopharyngea, which are all in the Cyrto-
phoria (Fig. 1). There is moderate to high node support
for these clades: 87/100 for the Suctoria, and 88/100
for the Cyrtophoria. Within the Cyrtophoria, mtSSU-
rDNA also infers *Chilodonella* to be sister to the clade
formed by *Chlamydonodon* and *Dysteria* with high node
support (98/100). For the Phyllopharyngea, the exact
same mtSSU-rDNA topology for the sampled taxa is
inferred in the nSU-rDNA (Fig. 2) and concatenated
(Fig. 3) trees with high node support.

Synthesis

Analyses of independent loci are essential to infer robust evolutionary relationships. Here we find a high
level of congruence in analyses of both nuclear and mi-
tochondrial SSU-rDNA sequences, which gives greater
confidence in our interpretation of the evolutionary his-
tory of ciliates. However, the mtSSU-rDNA sequences
fail to provide high node support for deep ciliate rela-
tionships, and we suggest that sequencing of this mi-
tochondrial locus be used at least initially for relation-
ships among shallower nodes.
Fig. 2. Nuclear SSU-rDNA tree inferred from an alignment of 1543 included characters. The most likely ML tree is shown; the BI tree was the same for well-supported nodes. Node support is as in Fig 1.

Fig. 3. Concatenated mitochondrial and nuclear SSU-rDNA tree inferred from an alignment of 2333 included characters. Most likely ML tree is shown; the BI tree was the same for well-supported nodes. Node support is as in Fig 1.
Acknowledgements. This work was supported by: Deutsche Forschungsgemeinschaft (DFG, grant DU1319/1-1) to M.D.; Austrian Science Fund (FWF grants P 20360-B17 and P 22846-B17) to W.F.; DFG (grant STO414/3-1) to T.S.; and United States National Science Foundation (NSF, grant DEB 0816828) to L.A.K. We would like to thank Krzysztof Wiąckowski and two anonymous reviewers for helpful suggestions.

REFERENCES

Rambaut A. (2006) FigTree. Institute of Evolutionary Biology, Univ. of Edinburgh. Available at: http://tree.bio.ed.ac.uk/software/figtree

Received on 6th August, 2013; revised on 13th September, 2013; accepted on 14th September, 2013