1duosnueln Joyiny dnous sispund DINAMN

c
)
0
<
O
T
=
>
o
D
b
(2]
®
=
o
=
©
>
c
—
>
o
=
<
Q
>
=
(7]
(@]
=
o
—

UKPMC Funders Group

Author Manuscript
J Agric Biol Environ Stat. Author manuscript; available in PMC 2010 July 8.

Published in final edited form as:
JAgric Biol Environ Stat. 2009 December 17; 14(4): 452-468. doi:10.1198/jabes.2009.07113.

A Nonparametric Lower Bound for the Number of Species
Shared by Multiple Communities

H.-Y. Pan, Anne Chao, and Wilhelm Foissner

H.-Y. Pan is Assistant Professor, Department of Applied Mathematics, National Chia-Yi
University, Chia-Yi, Taiwan 60004 (hypan@mail.ncyu.edu.tw). Anne Chao is Tsing Hua
Distinguished Chair Professor, Institute of Statistics, National Tsing Hua University, Hsin-Chu,
Taiwan 30043 (chao@stat.nthu.edu.tw). Wilhelm Fossiner is University Professor, Universitat
Salzburg, FB Organismische Biologie, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
(wilhelm.FOISSNER@shg.ac.at)

Abstract

In biological and ecological statistical inference, it is practically useful to provide a lower bound
for species richness in a community. Chao (1984,1989) derived a nonparametric lower bound for
species richness in a single community. However, there have been no lower bounds proposed in
the literature for the number of species shared by multiple communities. Based on sample species
abundance or replicated incidence records from each of the N communities, we derive in this
article a nonparametric approach to constructing a lower bound for the number of species shared
by N (N = 2) communities. The approach is valid for all types of species abundance distributions
(for abundance data) or species detection probabilities (for replicated incidence data). Variance
estimators for the proposed lower bounds are obtained by using typical asymptotic theory.
Simulation results are reported to examine the performance of the lower bounds. Replicated
incidence data of ciliate species collected in three areas from Namibia, southwest Africa, are used
for illustration. We also briefly discuss the application of the proposed method to estimate the size
of a shared population (i.e., the number of individuals in the intersection of multiple populations)
based on capture-recapture data from each population.
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1. INTRODUCTION

Species richness in a single community (alpha diversity) is a classic concept for
characterizing community diversity. The estimation of species richness has been extensively
discussed in the literature; see Seber (1982), Bunge and Fitzpatrick (1993), Colwell and
Coddington (1994), and Chao (2005) for reviews. For multiple communities, the number of
shared species plays an important role for describing community overlap and forms a basis
to construct various types of similarity indices or beta diversity. When compared with
species richness in one community, the estimation of shared species richness in multiple
communities has received relatively little attention. Although estimators for shared species
richness in two communities were proposed (e.g., Chao et al. 2000; Chao, Shen, and Hwang
2006), these methods have not been extended to more than two communities.

It is intuitively understood that, if there are many undetectable or “invisible” species in a
hyper-diverse community, then it is impossible to obtain a good estimate of species richness.
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Therefore, it is practically useful to provide a lower bound for species richness. A
nonparametric lower bound in a single community was derived by Chao (1984,1989) for
abundance-based data and for replicated incidence (i.e., presence or absence) data. The Chao
(1984,1989) lower bound has been applied in various disciplines. For example,
microbiologists used it to infer species richness in microbial hyper-diverse communities
(Hughes et al. 2001;Bohannan and Hughes 2003;Stach et al. 2003;Schloss and Handelsman
2005). However, there have been no lower bounds proposed for the number of species
shared by multiple communities.

Part of this research was initiated by analyzing soil ciliate species data collected in three
areas of Namibia, southwest Africa by Foissner and colleagues (Foissner, Agatha, and
Berger 2002). See Table 1 and Section 5 for data and detailed analysis. Questions
concerning the alpha, beta, and gamma diversity of microorganisms and their
biogeographical distribution (ubiquity or endemicity) have generated extensive discussion in
the literature. However, previous diversity analysis for soil ciliate species (Chao et al. 2006)
was limited to alpha diversity in a single community (or area). In order to investigate the
community overlap or beta diversity based on multiple-community data in Namibia, we
were motivated to estimate the number of species shared by at least two communities (or
areas).

When sample abundance or replicated incidence records are available from each of the N (N
> 2) communities, we propose in this article a unified approach to constructing a
nonparametric lower bound for the number of species shared by N communities. The
proposed method is nonparametric in the sense that they are not dependent on the
assumptions about the species abundance distribution (for abundance data) or the species
detection probability (for replicated incidence data). Variance estimators for the proposed
lower bounds are also obtained.

Since a review of the details on deriving the lower bound of species richness in a single
community (Chao 1984, 1989) would greatly help to extend the framework to multiple
communities, we provide such a review in Section 2 separately for abundance data (in
Section 2.1) and replicated incidence data (in Section 2.2). In Section 3, we develop a lower
bound for the number of species shared by two communities. In Section 4, a unified
approach is described for the case of more than two communities. In Section 5, the
replicated incidence data for ciliate species that motivated this research are analyzed as an
illustrative example. Section 6 reports a simulation study in order to examine the
performance of the proposed method. Some concluding remarks and relevant discussion are
provided in Section 7.

2. ONE COMMUNITY
2.1 Abundance Data

We first review the lower bound of species richness (Chao 1984, 1989) in a single
community. Assume that there are S species indexed from 1 to S and a fixed number of n
individuals are independently observed in the community. Denote the species probabilities

S
by (61, 05, ..., 6s), where Zi:ﬂi:l. That is, 6; the probability that any randomly selected
individual is classified to the ith species. Each probability is a combination of species
abundance and individual detectability. If all individuals in the community have the same
probabilities of being detected, then the species probabilities represent the true relative
abundances.

J Agric Biol Environ Stat. Author manuscript; available in PMC 2010 July 8.
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Let X; (species frequency) be the number of times, or individuals, that the ith species is
observed in the sample, i =1, 2, ..., S. Only those species with X; > 0 are observable in the
sample. The species frequencies (X1, Xp, ... , Xg) are assumed to follow a multinomial
distribution with cell total n and probabilities (01, 65, ... , 05).

Letf, k=0,1, ..., n, (frequency counts) be the number of species represented by k times,

S
or individuals, in the sample. That is, fk=zl.:11(Xi=k), where I(A) is the usual indicator
function, i.e., I(A) = 1 if the event A occurs, and 0 otherwise. Here, fy denotes the number of

s
undetected species in the sample. Thus, we have ”=Zi:1Xi=Zk21kfk. Let D denote the
s
number of distinct species observed in the sample, that is, DZZizll(Xi>0) :Zkzlfk'

A parametric approach to estimating species richness is to assume that (64, 65, ... , 65)
follows some types of distributions characterized by a few parameters. For example, Fisher,

S
Corbet, and Williams (1943) assumed that 9i=/1i/zk:1/1k, where (11, A2, ..., Ag) are a
random sample from a gamma distribution. MacArthur’s (1957) broken-stick model
assumed that (14, 2, ... , Ag) are a random sample from an exponential distribution. There
are other types of abundance distributions; see Magurran (2004) for a review.

Since S = D + fy, our estimating target becomes E(fg). Under the assumptions that (61, 5,
..., Os) are fixed unknown parameters, we have the following expectation, respectively, for
the expected number of undetected species, singletons, and doubletons:

N
E(f)=).(1-6)",
-1 (2.1a)

S
E(f)=) nt(1—6)"",
i=1 (2.1b)
> n
— A\n—2
E(fz)—Z( 5 )e%(l -0y,
i=1 (2.1¢)
Based on Equations (2.1a) to (2.1c), Chao (1989) used the following Cauchy-Schwarz
inequality
s s s 2
[Z(l - 9»"] lZe,?(l - e»“] > lZeia - 9»"1} :
i=1 i=1 i=1 (2.2)
to obtain a theoretical bound for E(fy):
(n-D[EGWI
E > —,
(o) 2E () 2.3
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The inequality becomes an equality if and only if all probabilities are equal (a homogeneous
case). If f, > 0, we can replace the expected values by the observed data in Equation (2.3)
and a lower bound for species richness becomes:

2
§:D+(n_ 1)—fl R
n 2f (2.4)

with the bound being achieved under a homogeneous community. We remark that instead of
treating (61, o, ... , 6s) as fixed parameters, they can be modeled as random effects selected
from an unknown distribution. Under a random-effect model, parallel derivation results in
the same estimator. A bias-corrected estimator in a homogeneous case turns out to be

S =D+fi (fi = )/ [2(/+D)]. (2.40)

The lower bound in Equation (2.4) was proposed by Chao (1984) using an alternative
derivation. For abundance data, the sample size n is often large so that the term (n — 1)/n in

the bound can be dropped and the estimator in Equation (2.4) is reduced to I)+f12/ 2/5).
This simplified estimator has been referred to as the Chaol estimator in the biological and
ecological literature (e.g., Colwell and Coddington 1994;Walther and Morand 1998;Hughes
et al. 2001). It is also featured in several computer software packages including EstimateS
(Colwell 2004), DOTUR (Schloss and Handelsman 2005), SPADE (Chao and Shen 2003),
and WS2m (Turner, Leitner, and Rosenzweig 1999).

An estimated variance formula derived in Chao and Shen (2003) for the estimator in
Equation (2.4) is

7ar (5) =2 | 0.25K> (i S+ K2(fi ) +O.5K(fi ] )] (2.5)

where K = (n — 1)/n. When f, = 0, it is suggested using the bias-corrected form and the

lower bound becomes § =D+ f; (; — 1) /2. In this instance, the variance formula is modified
to

\7a7(§) —0.25/12f; - D205 (fi - 1) =025/ S . 00

One advantage of using the Chaol estimator is that the estimated number of undetected
species depends only on the first two frequency counts, i.e., the numbers of singletons and
doubletons. This implies that ecologists do not need to obtain the exact frequency of any
species that has at least three individuals in the sample. The estimator is especially useful if
counting the exact number of individuals for each species appearing in the sample requires
substantial effort.

2.2 Replicated Incidence Data

In many microorganism surveys, only species presence/absence data can be collected
because there are too many individuals to be counted. For example, in the ciliate species
data (Section 5) and other microbial data, it is not possible to count exactly the number of
individuals and thus only the presence/absence of each observed species was recorded.
Accordingly, only replicated incidence data were available.

J Agric Biol Environ Stat. Author manuscript; available in PMC 2010 July 8.
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Assume that there are t samples and they are indexed 1, 2, ... , t. We use the general term
“sample” which could also refer to a team, occasion, transect line, a fixed period of time, or
an investigator. The presence or absence of any species for these t samples is recorded to
form a species-by-sample incidence matrix. In most applications, sufficient statistics from
the species-by-sample incidence matrix are the incidence-based frequency counts (Q1, Qo,
..., Q1), where Qy denotes the number of species that are detected in exactly k samples, k =
1,2, ..., t. Hence, Q; represents the number of “unique” species (those that are detected in
only one sample) and Q- represents the number of “duplicate” species (those that are
detected in only two samples).

Assume that the species detection probabilities, defined as the chance of encountering at
least one individual of a given species in any sample, are (64, 65, ... , s) and these
probabilities are kept constant across the samples. We remark that, unlike the constraint

N N
25:19':1 in abundance data, Zi:19" may be greater than 1 for incidence-based data.

Parallel derivations to those in Section 2.1 can be made with n being replaced by t, and the
counts (fq, fp, ..., fy) replaced by (Q1, Qo, ..., Q). Therefore, an estimator based on t
replicated incidence records for multiple samples has the form

S=D+[(z-1)/1] [Qf/ (2Q2)], which is referred to in the literature as the Chao2 estimator.
The number of samples t for incidence data may not be large, so we suggest retaining the
term (t — 1)/t in the estimator. This estimator was originally derived by Chao (1987) for
capture-recapture data as a lower bound. A bias-corrected form is

S =D+[(t— 1) /11{01 (O — 1)/ [2(Q,+1)]}- See Chao and Shen (2003) for an approximate
variance formula.
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3. TWO COMMUNITIES

3.1 Abundance Data

This section extends our approach to the estimation of the number of species shared by two
communities. Assume that there are S species in community | and there are S, species in
community Il. The species probabilities in communities | and 1l are denoted (611, 621, ... ,

S s
0s,,1) and (612, 02, .. , Os, 2), respectively. Zi=19n=zl.=19iz=1_ Let of the number shared
species be S1o. Without loss of generality, we assume that the first S1, species are the shared
species.

Two random samples (sample | with size ny and sample Il with size ny) are taken from
communities I and I, respectively. Assume that D15 shared species are observed. Denote the
observed frequencies in the two communities, respectively, by (Xq1, X1, .. , Xs4,1) and
(X12, X22, -++ 1 Xs,,2). Define for any two nonnegative integers j and k,

S1o
Jie= D 1 K=, Xp=h),
i=1

(3.1a)

S
fr=) I (Xn=j.Xp 2 1),
i=1

1duosnue Joyiny dnous) sispung DINAMN

(3.1b)
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S12

=) T (X = 1, Xn=k).
i=1 (3.1¢)

That is, fjk denotes the number of shared species that are observed j times in sample I and k
times in sample 1l. In particular, f{; denotes the number of shared species that are singletons
in both samples, and fgg denotes the number of shared species that are undetected in both
samples. Also, .y denotes the number of shared species that are observed in sample | but
not observed in sample 11, and a similar interpretation for fy..

Since S1p = Dy + f4g + fp+ + fgg @and only Dy, is observable, our approach is to find a lower
bound for each of the expected values of the other three terms, i.e., E(f+q), E(fg+), and E(fgg).
Assuming a multinomial model for each of the two sets of frequencies, we have

Si2

E(fo) =) (1= )" (1 - 6)",

i=1 (3.2a)
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S12
E(fi)=)  [1-(1-6)"](1-6p)"™,
i1 (3.2b)
Sia
E(for)=) (1-6:)" [1-(1-6)"].
i=1 (3.2¢)

1. A lower bound for E(f.q): Note we have

S12

E(fi) =) [1= = 6:)" mba(1 - 62",
i=1

S

Eray=p (1= (1= 6" Lna (ny — 1) /2] 65(1 — )" 2,
i=1

The following Cauchy—Schwarz inequality

2

S S S12
Dli—a—eym]a- 0,-2)”2] [Z [1- (-6 650 - a,-z>"2-2] > lz [1= (1= 6" ]02(1 = 62)™7"|

i=1 i=1 i=1

1duosnuen Joyiny dnols siapund JDINAMN

leads to
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(my — DE(f:)]

E +0) =2 .
o) 2 = R () 33

The equality holds if and only if community 2 is homogenous in species
probabilities.

2. Similarly, a lower bound for E(fy+) is

(m — D) [E(i0)]

E (foy) > .
(fou) 2 2E (/o) G40

The equality holds if and only if community 1 is homogenous in species
probabilities.

3. Alower bound for E(fyg) is obtained by noting

S

E(fi) =Zn19i1(1 — 6" b (1 — Gy,
=1
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S12

E(fn) =) [m (n1 = 1) [2165(1 = 62" [y (n — 1) /21651 - 6p)"™ 2.
i=1

Again, a similar Cauchy-Schwarz inequality

2

S S12 Si2
DA —oma - eiz)"Z] [Zaﬁa — 00" (1 - eiz)"zz} > [ > 00 (1= 62)" 01 - )™ !
i=1 i=1

i=1

gives

(m = 1) (my = D[E(iD)]?
E .
o) 2 T B (/) 59

Combining the above three lower bounds, we thus have a lower bound for the
shared species richness (let Kj = (nj — 1)/n;)

2 2 2
§12=D12+K1 fl+ +K2 +1 +K1K2£.
24 2f2 4fn (3.6)

In many cases, the sample sizes nq and n, are large for abundance data; thus, the
terms (ny — 1)/ny and (ny — 1)/n, can be dropped in the above formula. The
estimator in Equation (3.6) can be regarded as an extension of the Chaol estimator
to two communities. When f,,. = 0 or 4, = 0, a bias-corrected estimator is

1duosnuen Joyiny dnols siapund JDINAMN
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fra(fi=1 fis (is = 1) futu-1

S =D +K +K +K K .
PEERTRT (Far) T2kt T A () 3.7)

Note that only observed shared species are involved in the formulas of Equations
(3.6) and (3.7), thus observed nonshared species play no role in our estimation,
although any observed nonshared species could actually be a shared species.
Because the proposed estimator can be regarded as a function of the statistics (D15,
f11, f22, f14, f24, f11, f42), We obtain a variance estimator by using a standard
asymptotic approach under a multinomial model. Then the estimated variance can
be used to construct a confidence interval for the true parameter using a log-
transformation (Chao 1987).

3.2 Replicated Incidence Data

The method developed for abundance data can be directly adapted to deal with the replicated
incidence case. All notation and model formulation are similar to those in Section 3.1.
Assume that there are t; samples randomly taken from community | and t, samples from
community Il. In each sample, only presence/absence data are recorded. The two sets of
probabilities (011, 621, ... , 0s;,1) and (012, 022, ... , Us, o) in the incidence case represent
species detection probabilities in any sample from communities | and |1, respectively.

Let Xj; and X;, denote the number of samples that the ith species is detected in communities

S12 .
I and 11, respectively. Let ij:Zizll (Xi1=J. Xi2=k) denote the number of shared species
that are detected in j samples in community | and k samples in community 1. Similarly, we
can define Qj+ and Q.. By applying a method analogous to that in Section 3.1, it can be

shown that the lower bound §,, and the bias-corrected version g ,, for the number of shared
species based on incidence counts have the same forms as in Equations (3.6) and (3.7),
except that the samples sizes n1 and n, should be, respectively, by t; and ty, and abundance
counts replaced by incidence counts. We remark that an approximate estimator of shared
species richness was derived in Chao, Shen, and Hwang (2006) for both types of data based
on the Laplace approximation formula, but that estimator cannot be theoretically verified to
be a lower bound.

4. MORE THAN TWO COMMUNITIES

The approach proposed in Section 3 has an obvious extension to the case of more than two
communities. We first describe the derivation for three communities. Extension to more than
three communities is direct. Here a “shared” species is defined as that the species belongs to
all communities. Assume that there are S123 species shared by three communities I, 11, and
111 and a random sample is taken from each of the three communities. The three samples are
called samples I, 11, and 111 with sizes nq, ny, and ns, respectively. Let D123 denote the
observed shared species richness in the three samples. Then

S123=D123+ 110+t fr0++ for++ foor + fos0+ fro0+ fooos (4.1)

where f,+g denotes the number of shared species that are observed in samples I, 11, but not
observed in sample I11, fogp denotes the number of shared species that are undetected in all
three samples, and a similar interpretation for other terms in Equation (4.1).

J Agric Biol Environ Stat. Author manuscript; available in PMC 2010 July 8.
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1. Based on a similar type of inequality as in Equations (3.3) and (3.4), we can get a
lower bound for the expected value of each term of f,q + f1g+ + fo++ as shown in
the second term to the fourth term in the right hand side of Equation (4.2).

2. Based on a similar type of inequality as in Equation (3.5), we can get a lower
bound for the expected value of each term of fpo+ + fg+g + frgg as shown in the fifth
term to the seventh term of Equation (4.2).

3. Extending Equation (3.5), we have a lower bound for E(fpgg) as showninthe last
term of Equation (4.2).

Combining the above, we have a lower bound for S;,3 as follows:

2 2 2 2 2 2 2
§123=D123+K3 f++1 +K2 +1+ +K1 f1++ +K1K2 f11+ +K1K3 f1+1 +K2K3 +11 +K1K2K3 flll
2fis 2fi24 2fr4s 4104 44 4fim 8222 (4.2)

An estimated variance can be obtained by an asymptotic method. Extending Equations (3.6)
and (4.2) with self-explanatory notation generalization, we have a lower bound for four
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communities:
. 2
S1234=D1x3a+Kj
2f2+++
2
+--- 4K f+++1
2.f+++2
2
+K1 K2 f11++
4f22++
2
+K, K N
4f2+2+
f-3+11
+- -+ K3K4—
4f++22
f1211+
+K1K2K3
8fm+
f121+1
+K K)Ky
8 2242
2
+ +K,K3Ky f+111
81222
2
+K1K2K3K4£
16 /22 (4.3)

Thus, we have provided a unified approach to formulating lower bounds for any number of
communities. However, the estimated variance estimator becomes quite complicated.
Currently, we have variance estimators only up to five communities.

Based on Equations (4.2) and (4.3), similar lower bounds for replicated incidence data can
be obtained by replacing frequency counts by incidence counts and each sample size by the
number of samples. Variance estimators are derived in an analogous way.

1duosnue|n Joyiny dnols siapund DINAMN
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5. EXAMPLE

A total of 51 soil samples were taken from three areas of Namibia; see Table 1 for a
description of relevant data information. Generally, collections were made from a variety of
soil and vegetation types of the respective area. About 10 small subsamples were taken from
an area of about 100 m2 and mixed to a composite soil sample. In each soil sample,
presence/absence of ciliate species was recorded. Species were determined by combining
live observation, silver impregnation, and scanning electron microscopy. Detailed sampling
locations, procedures, and species identification were described in Foissner (1999,2006) and
Foissner, Agatha, and Berger (2002). After presence/absence of soil ciliate species was
recorded for each sample, the replicated incidence data were merged by species identity and
a total of 331 species were recorded in our data. All data in EXCEL spreadsheets are
available from the authors upon request.

We illustrate one-community species richness estimation for each area and shared species
richness estimation for any two areas (three combinations) and for all three areas; see Table
2. We provide for each case a lower bound for species richness or shared species richness in
Table 2. The communities considered in our applications are highly heterogeneous and thus
we adopt the original form of estimators. That is, our estimates are calculated from
Equations (2.4), (3.6), and (4.2) with sample size there being replaced by the number of
samples and frequency counts being replaced by incidence counts. The bias-corrected
formulas which are derived under a homogeneous case are not reported here. For each
estimate, its associated SE (standard error) as well as the 95% confidence interval based on a
log-transformation are also shown in Table 2. The percentage of undetected shared species
with respect to the estimated minimum is given in the last column.
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All estimates indicate that there are still a substantial fraction of undetected species and
shared species in the current data. For the alpha diversity, on average, about 41% of species
diversity is still undetected. This is consistent with the finding in Chao et al. (2006). For
estimating shared species richness, the observed number of shared species substantially
underestimates the true number of shared species. Our approach reveals the extent of under-
estimation for the observed number of shared (an average 42% for any two areas and 48%
for three areas) and provides helpful information for understanding community overlap of
micro-organisms.

6. SIMULATION

Since our data analysis was based on replicated incidence data, we carried out a simulation
study to investigate the performance of the proposed lower bounds for such kinds of data.
We examined the shared species richness estimation for two and three communities. In each
community, five types of species detection probabilities were considered: one homogeneous
and four heterogeneous communities with 200 species in each. The five sets of species

detection probabilities along with their average ( /) and coefficient of variation (CV) are
given as follows:

Type l: 6,=0.10,i=1, ..., 200 (¥ =0.10, CV = 0.0),

Type II: 6; ~ Uniform(0, 1), i =1, ..., 200 (¥ = 0.50, CV = 0.58),

1duosnue Joyiny dnous) sispung DINAMN

Type 11: 6, ~ Beta(, 2),i =1, ..., 200 (# = 0.33, CV = 0.71),

Type IV: 6 = 10/(i + 10), i = 1, ..., 200 (¥ = 0.15, CV = 1.01),

J Agric Biol Environ Stat. Author manuscript; available in PMC 2010 July 8.
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Type V: 6;=3/(i+3),i=1, ..., 200 ( =0.06, CV = 1.55).

Type | denotes a homogeneous case, i.e., all species have the same probability of being
detected in any sample; Types Il and 11 assume that the probabilities represent a random
sample, respectively, from a uniform or a beta density. (That is, for each simulation trial, we
generated a sample of size of 200 as species probabilities.) Types IV and V are in a form of
truncated logarithmic series, which is widely prevalent in modeling natural frequency data.
Itis also called Zipf’s law in linguistics and behavioral sciences. The value of CV
characterizes the degree of heterogeneity among detection probabilities.

We considered all 15 possible combination cases of any two communities: (I versus 1), (I
versus 1), ..., (V versus V) as our target communities. We assume that the first 120 species
are the shared species. Thus Sq =S, = 200 and S1» = 120. Table 3 presents the simulation
results for the case of two communities.

For three communities, we considered 35 possible combination cases of any three
communities: (I, 1, 1), (I, I, M), ..., (V, V, V). We assumed that S; = S, = S3 = 200, S1» = S13
= Sp3 =120, and Sq»3 = 80. The overlap structure is described as follows: (a) the first 80
species in each community are shared by all three communities, (b) the last 40 species in
each community are unique species, and (c) the species shared by communities | and 11 are
the 81 ~ 120th species in community | and the 81 ~ 120th species in community 11; the
species shared by communities I and 111 are the 121 ~ 160th species in community | and the
81 ~ 120th species in community I11; and the species shared by communities 11 and 111 are
the 121 ~ 160th species in community Il and the 121 ~ 160th species in community I11.
Table 4 presents the simulation results for the case of three communities.

For any fixed combination of communities, we generated 20 replicated incidence samples
from each community according to a specified type of detection probabilities. Then for each
generated dataset, the observed number of shared species was recorded; the original lower

bound S, (or §,5) and the bias-corrected version g ,, (or § 1) as well as their SE estimates
and associated 95% confidence intervals were obtained. The resulting averages in Tables 3
and 4 were based on 2000 simulation trials. The percentage of 2000 simulated data sets in
which the 95% confidence intervals covered the true parameter was recorded and shown in
the last column in each table.

From the two tables, the traditional approach of using the observed number of shared species
as an estimator of shared species richness is clearly not appropriate. The observed number of
shared species exhibits severely negative bias in all cases. When at least one set of detection
probabilities is Type V (low average probability and high heterogeneity), the bias is
substantial.

The performance of the lower bounds as estimators of shared species richness improves
when more shared information are available. The magnitudes of bias, sample SE, and
sample RMSE decrease as more shared species are observed. The bias-corrected bound is
always lower than the original bound, but these two bounds are generally comparable with
respect to RMSE. In terms of bias, the bias-corrected bound is useful when all communities
are homogeneous as in the case (I versus I) in Table 3 or when there are at least two
communities are homogeneous as in the three cases (I, I, 1), (I, I, 1V), and (1, I, V) in Table
4. This is expected because the bias-corrected form is derived under a homogeneous
condition. Thus, unless in the special case that most communities are homogeneous, we
suggest using the original lower bound. Since the CV of species detection probabilities
measures the degree of heterogeneity, a CV estimator can be used to quantify the degree of
heterogeneity present in data; see Chao et al. (2000).
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When a sufficient amount of shared information is available (say, at least 70% of the shared
species are observed), the lower bound in most cases is close to the true parameter. Thus it
can be used as an estimator of shared species richness. When there are not sufficient shared
data, our approach only provides a reliable lower bound. The magnitude of downwards bias
mainly depends on the average and CV of the detection probabilities as well as the number
of replicated samples. Further work is needed to determine more sophisticated guidelines
about how large the samples should be to provide sufficient shared information.

Simulations also show that the estimated standard errors using the asymptotic method,
although biased slightly downwards, are generally satisfactory when compared with the
sample standard errors. The confidence interval based on the estimated SE for the original
estimator performs reasonably well as most coverage probabilities are close to the
anticipated nominal confidence coefficient of 95%.

7. CONCLUDING REMARKS AND DISCUSSION

Using the Cauchy—Schwarz inequality for the expected frequency counts based on
abundance or replicated incidence data, we have developed a simple and useful lower bound
for the number of species shared by multiple communities. The proposed lower bounds for
abundance and replicated incidence data are natural extensions of the previous estimators
used for a single community. Simulation results have shown that the performance of the
lower bounds under several types of abundance distributions is generally satisfactory. The
estimators discussed in this article will be featured in Program SPADE (Species Prediction
And Diversity Estimation) following publication of this article (Chao and Shen 2003).

For estimating species richness in one community, we have discussed in Section 2 that our
lower bound for the undetected species is in terms of the number of singletons and
doubletons (for abundance data) or of uniques and duplicates (for replicated incidence data).
Similar advantage holds for the case of two communities. For example, Equation (3.6)
implies that the estimated number of undetected shared species for abundance data requires
only information of the frequencies f1+, f+1, fo4, T2, f 11, and f2,. As a result, having the
exact species frequency is not necessary for species that have at least three individuals in
any of the two communities. Parallel conclusions are also valid for replicated incidence data
and for more than two communities.

One critical assumption about our sampling model for abundance data is that we assume that
individuals are randomly selected with replacement from each of the target community.
Under this assumption, the species frequencies follow a multinomial distribution. However,
in the case of sampling without replacement, the corresponding distribution becomes a
generalized hyper-geometric distribution, which is less mathematically tractable. Besides,
sampling fraction (i.e., the ratio of sample size and total population size) should be
considered in the model framework. Research on the sampling without replacement is still
undergoing. Also, for multiple incidence data, one restrictive assumption is that the species
detection probability, although it is allowed to vary among species, is kept as a constant
across all samples. This assumption may not be satisfied if samples are taken from areas
where species occurrences are spatially aggregated.

In our proposed lower bounds, we did not consider relevant covariate information such as
distance between communities and habitat types. Hillebrand et al. (2001) and Green et al.
(2004) used species overlap information to assess the similarity of microbes as a function of
geographic distance. These authors discovered the distance-decay relationship for microbial
assemblages. Thus, the communities that are similar (close geographically and similar

J Agric Biol Environ Stat. Author manuscript; available in PMC 2010 July 8.



c
2
0
<
@
T
=
>
o
D
-
(2]
®
=
o
=
©
>
=
—
=y
o
=
<
Q
>
=
(7]
=2
=
—

1duosnue Joyiny dnous) sispung DINAMN

Pan et al.

Page 13

habitat) would generally have more overlap than one farther apart. How to incorporate
covariate information in the estimation of shared species richness merits more research.

Boulinier et al. (1998) pointed out a simple analogy between the species replicated incidence
data in a community and capture-recapture studies of a closed population. Thus, the
estimation of species richness in a community based on replicated incidence data is
equivalent to the estimation of the size of a population based on capture-recapture data. The
analogy can be extended to the general case of multiple communities. That is, the estimation
of shared species richness based on multiple incidence data from each community is
equivalent to the estimation of the size of a shared population based on capture-recapture
data from each population. Consequently, the proposed methodology for replicated
incidence data can be directly applied to estimate the size of a shared population. This
application and relevant topics are currently under investigation; see Chao, Pan, and Chiang
(2008).
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Table 1

Data summary for three areas of Namibia (original data are given in Foissner, Agatha, and Berger 2002)

Data

Number  Number of Number of  Number of
Area of soil observed unique  duplicate

samples species species species
Area 1: Southern Namib Desert 15 154 85 29
Avrea 2: Central Namib Desert 17 136 69 28
Area 3: Etosha Pan 19 234 125 44
Total 51 331
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